A Counterexample to the Extension Space Conjecture for Realizable Oriented Matroids
Séminaire lotharingien de combinatoire, 78B (2017)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
The extension space conjecture of oriented matroid theory states that the space of all one-element, non-loop, non-coloop extensions of a realizable oriented matroid of rank d has the homotopy type of a sphere of dimension d-1. We disprove this conjecture by showing the existence of a realizable uniform oriented matroid of high rank and corank 3 with disconnected extension space.
@article{SLC_2017_78B_a30,
author = {Gaku Liu},
title = {A {Counterexample} to the {Extension} {Space} {Conjecture} for {Realizable} {Oriented} {Matroids}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2017},
volume = {78B},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a30/}
}
Gaku Liu. A Counterexample to the Extension Space Conjecture for Realizable Oriented Matroids. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a30/