A Counterexample to the Extension Space Conjecture for Realizable Oriented Matroids
Séminaire lotharingien de combinatoire, 78B (2017)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
The extension space conjecture of oriented matroid theory states that the space of all one-element, non-loop, non-coloop extensions of a realizable oriented matroid of rank d has the homotopy type of a sphere of dimension d-1. We disprove this conjecture by showing the existence of a realizable uniform oriented matroid of high rank and corank 3 with disconnected extension space.
@article{SLC_2017_78B_a30,
author = {Gaku Liu},
title = {A {Counterexample} to the {Extension} {Space} {Conjecture} for {Realizable} {Oriented} {Matroids}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {78B},
year = {2017},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a30/}
}
Gaku Liu. A Counterexample to the Extension Space Conjecture for Realizable Oriented Matroids. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a30/