Sorting via Chip-Firing
Séminaire lotharingien de combinatoire, 78B (2017)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We investigate a variant of the chip-firing process on the infinite path graph Z: rather than treating the chips as indistinguishable, we label them with positive integers. To fire an unstable vertex, i.e., a vertex with more than one chip, we choose any two chips at that vertex and move the lesser-labeled chip to the left and the greater-labeled chip to the right. This labeled version of the chip-firing process exhibits a remarkable confluence property, similar to but subtler than the confluence that prevails for unlabeled chip-firing: when all chips start at the origin and the number of chips is even, the chips always end up in sorted order. Our proof of sorting relies upon an independently interesting lemma concerning unlabeled chip-firing which says that stabilization preserves a natural partial order on configurations. We also discuss extensions to other variants of the infinite path, an intriguing empirical observation on random firing of labeled chips, and a possible generalization to other types.

@article{SLC_2017_78B_a29,
     author = {Sam Hopkins and Thomas McConville and Jim Propp},
     title = {Sorting via {Chip-Firing}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {78B},
     year = {2017},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a29/}
}
TY  - JOUR
AU  - Sam Hopkins
AU  - Thomas McConville
AU  - Jim Propp
TI  - Sorting via Chip-Firing
JO  - Séminaire lotharingien de combinatoire
PY  - 2017
VL  - 78B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a29/
ID  - SLC_2017_78B_a29
ER  - 
%0 Journal Article
%A Sam Hopkins
%A Thomas McConville
%A Jim Propp
%T Sorting via Chip-Firing
%J Séminaire lotharingien de combinatoire
%D 2017
%V 78B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a29/
%F SLC_2017_78B_a29
Sam Hopkins; Thomas McConville; Jim Propp. Sorting via Chip-Firing. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a29/