Multiplicative Partition Functions for Reverse Plane Partitions Derived from an Integrable Dynamical System
Séminaire lotharingien de combinatoire, 78B (2017) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

In this paper we clarify a close connection between reverse plane partitions and an integrable dynamical system called the discrete two-dimensional (2D) Toda molecule. We show that a multiplicative partition function for reverse plane partitions of arbitrary shape with bounded parts can be obtained from each non-vanishing solution to the discrete 2D Toda molecule. As an example we derive a partition function which generalizes MacMahon's triple product formula and Gansner's multi-trace generating function from a specific solution to the discrete 2D Toda molecule.

@article{SLC_2017_78B_a28,
     author = {Shuhei Kamioka},
     title = {Multiplicative {Partition} {Functions} for {Reverse} {Plane} {Partitions} {Derived} from an {Integrable} {Dynamical} {System}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {2017},
     volume = {78B},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a28/}
}
TY  - JOUR
AU  - Shuhei Kamioka
TI  - Multiplicative Partition Functions for Reverse Plane Partitions Derived from an Integrable Dynamical System
JO  - Séminaire lotharingien de combinatoire
PY  - 2017
VL  - 78B
UR  - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a28/
ID  - SLC_2017_78B_a28
ER  - 
%0 Journal Article
%A Shuhei Kamioka
%T Multiplicative Partition Functions for Reverse Plane Partitions Derived from an Integrable Dynamical System
%J Séminaire lotharingien de combinatoire
%D 2017
%V 78B
%U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a28/
%F SLC_2017_78B_a28
Shuhei Kamioka. Multiplicative Partition Functions for Reverse Plane Partitions Derived from an Integrable Dynamical System. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a28/