Multiplicative Partition Functions for Reverse Plane Partitions Derived from an Integrable Dynamical System
Séminaire lotharingien de combinatoire, 78B (2017)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
In this paper we clarify a close connection between reverse plane partitions and an integrable dynamical system called the discrete two-dimensional (2D) Toda molecule. We show that a multiplicative partition function for reverse plane partitions of arbitrary shape with bounded parts can be obtained from each non-vanishing solution to the discrete 2D Toda molecule. As an example we derive a partition function which generalizes MacMahon's triple product formula and Gansner's multi-trace generating function from a specific solution to the discrete 2D Toda molecule.
@article{SLC_2017_78B_a28,
author = {Shuhei Kamioka},
title = {Multiplicative {Partition} {Functions} for {Reverse} {Plane} {Partitions} {Derived} from an {Integrable} {Dynamical} {System}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2017},
volume = {78B},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a28/}
}
Shuhei Kamioka. Multiplicative Partition Functions for Reverse Plane Partitions Derived from an Integrable Dynamical System. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a28/