Multiplicative Partition Functions for Reverse Plane Partitions Derived from an Integrable Dynamical System
Séminaire lotharingien de combinatoire, 78B (2017)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
In this paper we clarify a close connection between reverse plane partitions and an integrable dynamical system called the discrete two-dimensional (2D) Toda molecule. We show that a multiplicative partition function for reverse plane partitions of arbitrary shape with bounded parts can be obtained from each non-vanishing solution to the discrete 2D Toda molecule. As an example we derive a partition function which generalizes MacMahon's triple product formula and Gansner's multi-trace generating function from a specific solution to the discrete 2D Toda molecule.
@article{SLC_2017_78B_a28,
author = {Shuhei Kamioka},
title = {Multiplicative {Partition} {Functions} for {Reverse} {Plane} {Partitions} {Derived} from an {Integrable} {Dynamical} {System}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {78B},
year = {2017},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a28/}
}
TY - JOUR AU - Shuhei Kamioka TI - Multiplicative Partition Functions for Reverse Plane Partitions Derived from an Integrable Dynamical System JO - Séminaire lotharingien de combinatoire PY - 2017 VL - 78B PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a28/ ID - SLC_2017_78B_a28 ER -
Shuhei Kamioka. Multiplicative Partition Functions for Reverse Plane Partitions Derived from an Integrable Dynamical System. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a28/