A Tropical Isoperimetric Inequality
Séminaire lotharingien de combinatoire, 78B (2017)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We introduce tropical analogues of the notion of volume of polytopes, leading to a tropical version of the (discrete) classical isoperimetric inequality. The planar case is elementary, but a higher-dimensional generalization leads to an interesting class of ordinary convex polytopes, characterizing the equality case in the isoperimetric inequality. This study is motivated by open complexity questions concerning linear optimization and its tropical analogs.
@article{SLC_2017_78B_a26,
author = {Jules Depersin and St\'ephane Gaubert and Michael Joswig},
title = {A {Tropical} {Isoperimetric} {Inequality}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {78B},
year = {2017},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a26/}
}
Jules Depersin; Stéphane Gaubert; Michael Joswig. A Tropical Isoperimetric Inequality. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a26/