Stapledon Decompositions and Inequalities for Coefficients of Chromatic Polynomials
Séminaire lotharingien de combinatoire, 78B (2017) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

We use a polynomial decomposition result by Stapledon to show that the numerator polynomial of the Ehrhart series of an open polytope is the difference of two symmetric polynomials with nonnegative integer coefficients. We obtain a related decomposition for order polytopes and for the numerator polynomial of the corresponding series for chromatic polynomials. The nonnegativity of the coefficients in such decompositions provide inequalities satisfied by the coefficients of chromatic polynomials for any simple graph.

@article{SLC_2017_78B_a23,
     author = {Emerson Le\'on},
     title = {Stapledon {Decompositions} and {Inequalities} for {Coefficients} of {Chromatic} {Polynomials}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {2017},
     volume = {78B},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a23/}
}
TY  - JOUR
AU  - Emerson León
TI  - Stapledon Decompositions and Inequalities for Coefficients of Chromatic Polynomials
JO  - Séminaire lotharingien de combinatoire
PY  - 2017
VL  - 78B
UR  - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a23/
ID  - SLC_2017_78B_a23
ER  - 
%0 Journal Article
%A Emerson León
%T Stapledon Decompositions and Inequalities for Coefficients of Chromatic Polynomials
%J Séminaire lotharingien de combinatoire
%D 2017
%V 78B
%U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a23/
%F SLC_2017_78B_a23
Emerson León. Stapledon Decompositions and Inequalities for Coefficients of Chromatic Polynomials. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a23/