Filters in the Partition Lattice
Séminaire lotharingien de combinatoire, 78B (2017)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Given a filter Δ in the poset of compositions of n, we form the filter Π*Δ in the partition lattice. We determine all the reduced homology groups of the order complex of Π*Δ as Sn-1-modules in terms of the reduced homology groups of the simplicial complex Δ and in terms of Specht modules of border shapes. We also obtain the homotopy type of this order complex. These results generalize work of Calderbank--Hanlon--Robinson and Wachs on the d-divisible partition lattice. Our main theorem applies to a plethora of examples, including filters associated to integer knapsack partitions and filters generated by all partitions having block sizes a or b. We also obtain the reduced homology groups of the filter generated by all partitions having block sizes belonging to the arithmetic progression a, a+d, ..., a+(a-1)d, extending work of Browdy.

@article{SLC_2017_78B_a22,
     author = {Richard Ehrenborg and Dustin Hedmark},
     title = {Filters in the {Partition} {Lattice}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {78B},
     year = {2017},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a22/}
}
TY  - JOUR
AU  - Richard Ehrenborg
AU  - Dustin Hedmark
TI  - Filters in the Partition Lattice
JO  - Séminaire lotharingien de combinatoire
PY  - 2017
VL  - 78B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a22/
ID  - SLC_2017_78B_a22
ER  - 
%0 Journal Article
%A Richard Ehrenborg
%A Dustin Hedmark
%T Filters in the Partition Lattice
%J Séminaire lotharingien de combinatoire
%D 2017
%V 78B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a22/
%F SLC_2017_78B_a22
Richard Ehrenborg; Dustin Hedmark. Filters in the Partition Lattice. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a22/