On Universal Quadratic Identities for Minors of Quantum Matrices
Séminaire lotharingien de combinatoire, 78B (2017)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We give a complete combinatorial characterization of homogeneous quadratic identities of "universal character" valid for minors of quantum matrices over a field. This is obtained as a consequence of a study of quantized minors of the so-called path matrices associated with certain planar graphs generalizing Cauchon graphs.
@article{SLC_2017_78B_a20,
author = {Vladimir I. Danilov and Alexander V. Karzanov},
title = {On {Universal} {Quadratic} {Identities} for {Minors} of {Quantum} {Matrices}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {78B},
year = {2017},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a20/}
}
Vladimir I. Danilov; Alexander V. Karzanov. On Universal Quadratic Identities for Minors of Quantum Matrices. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a20/