On Universal Quadratic Identities for Minors of Quantum Matrices
Séminaire lotharingien de combinatoire, 78B (2017)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We give a complete combinatorial characterization of homogeneous quadratic identities of "universal character" valid for minors of quantum matrices over a field. This is obtained as a consequence of a study of quantized minors of the so-called path matrices associated with certain planar graphs generalizing Cauchon graphs.

@article{SLC_2017_78B_a20,
     author = {Vladimir I. Danilov and Alexander V. Karzanov},
     title = {On {Universal} {Quadratic} {Identities} for {Minors} of {Quantum} {Matrices}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {78B},
     year = {2017},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a20/}
}
TY  - JOUR
AU  - Vladimir I. Danilov
AU  - Alexander V. Karzanov
TI  - On Universal Quadratic Identities for Minors of Quantum Matrices
JO  - Séminaire lotharingien de combinatoire
PY  - 2017
VL  - 78B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a20/
ID  - SLC_2017_78B_a20
ER  - 
%0 Journal Article
%A Vladimir I. Danilov
%A Alexander V. Karzanov
%T On Universal Quadratic Identities for Minors of Quantum Matrices
%J Séminaire lotharingien de combinatoire
%D 2017
%V 78B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a20/
%F SLC_2017_78B_a20
Vladimir I. Danilov; Alexander V. Karzanov. On Universal Quadratic Identities for Minors of Quantum Matrices. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a20/