Unit Interval Orders and the Dot Action on the Cohomology of Regular Semisimple Hessenberg Varieties
Séminaire lotharingien de combinatoire, 78B (2017) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

Motivated by a 1993 conjecture of Stanley and Stembridge, Shareshian and Wachs conjectured that the characteristic map takes the dot action of the symmetric group on the cohomology of a regular semisimple Hessenberg variety to ωXG(t), where XG(t) is the chromatic quasisymmetric function of the incomparability graph G of the corresponding natural unit interval order, and ω is the usual involution on symmetric functions. We prove the Shareshian-Wachs conjecture. Our proof uses the local invariant cycle theorem of Beilinson-Bernstein-Deligne to obtain a surjection from the cohomology of a regular Hessenberg variety of Jordan type λ to a space of local invariant cycles; as λ ranges over all partitions, these spaces collectively contain all the information about the dot action on a regular semisimple Hessenberg variety. Using a palindromicity argument, we show that in our case the surjections are actually isomorphisms, thus reducing the Shareshian-Wachs conjecture to computing the cohomology of a regular Hessenberg variety. But this cohomology has already been described combinatorially by Tymoczko; we give a bijective proof (using a generalization of a combinatorial reciprocity theorem of Chow) that Tymoczko's combinatorial description coincides with the combinatorics of the chromatic quasisymmetric function.

@article{SLC_2017_78B_a2,
     author = {Patrick Brosnan and Timothy Y. Chow},
     title = {Unit {Interval} {Orders} and the {Dot} {Action} on the {Cohomology} of {Regular} {Semisimple} {Hessenberg} {Varieties}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {2017},
     volume = {78B},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a2/}
}
TY  - JOUR
AU  - Patrick Brosnan
AU  - Timothy Y. Chow
TI  - Unit Interval Orders and the Dot Action on the Cohomology of Regular Semisimple Hessenberg Varieties
JO  - Séminaire lotharingien de combinatoire
PY  - 2017
VL  - 78B
UR  - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a2/
ID  - SLC_2017_78B_a2
ER  - 
%0 Journal Article
%A Patrick Brosnan
%A Timothy Y. Chow
%T Unit Interval Orders and the Dot Action on the Cohomology of Regular Semisimple Hessenberg Varieties
%J Séminaire lotharingien de combinatoire
%D 2017
%V 78B
%U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a2/
%F SLC_2017_78B_a2
Patrick Brosnan; Timothy Y. Chow. Unit Interval Orders and the Dot Action on the Cohomology of Regular Semisimple Hessenberg Varieties. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a2/