Unit Interval Orders and the Dot Action on the Cohomology of Regular Semisimple Hessenberg Varieties
Séminaire lotharingien de combinatoire, 78B (2017)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
Motivated by a 1993 conjecture of Stanley and Stembridge, Shareshian and Wachs conjectured that the characteristic map takes the dot action of the symmetric group on the cohomology of a regular semisimple Hessenberg variety to ωXG(t), where XG(t) is the chromatic quasisymmetric function of the incomparability graph G of the corresponding natural unit interval order, and ω is the usual involution on symmetric functions. We prove the Shareshian-Wachs conjecture. Our proof uses the local invariant cycle theorem of Beilinson-Bernstein-Deligne to obtain a surjection from the cohomology of a regular Hessenberg variety of Jordan type λ to a space of local invariant cycles; as λ ranges over all partitions, these spaces collectively contain all the information about the dot action on a regular semisimple Hessenberg variety. Using a palindromicity argument, we show that in our case the surjections are actually isomorphisms, thus reducing the Shareshian-Wachs conjecture to computing the cohomology of a regular Hessenberg variety. But this cohomology has already been described combinatorially by Tymoczko; we give a bijective proof (using a generalization of a combinatorial reciprocity theorem of Chow) that Tymoczko's combinatorial description coincides with the combinatorics of the chromatic quasisymmetric function.
@article{SLC_2017_78B_a2,
author = {Patrick Brosnan and Timothy Y. Chow},
title = {Unit {Interval} {Orders} and the {Dot} {Action} on the {Cohomology} of {Regular} {Semisimple} {Hessenberg} {Varieties}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2017},
volume = {78B},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a2/}
}
TY - JOUR AU - Patrick Brosnan AU - Timothy Y. Chow TI - Unit Interval Orders and the Dot Action on the Cohomology of Regular Semisimple Hessenberg Varieties JO - Séminaire lotharingien de combinatoire PY - 2017 VL - 78B UR - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a2/ ID - SLC_2017_78B_a2 ER -
Patrick Brosnan; Timothy Y. Chow. Unit Interval Orders and the Dot Action on the Cohomology of Regular Semisimple Hessenberg Varieties. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a2/