Semi-Baxter and Strong-Baxter Permutations
Séminaire lotharingien de combinatoire, 78B (2017)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
In this paper, we enumerate two families of pattern-avoiding permutations: those avoiding the vincular pattern 2\underbracket{41}3, which we call semi-Baxter permutations, and those avoiding the vincular patterns 2\underbracket{41}3, 3\underbracket{14}2 and 3\underbracket{41}2, which we call strong-Baxter permutations. For each of these families, we describe a generating tree, which translates into a functional equation for the generating function. For semi-Baxter permutations, it is solved using (a variant of) the kernel method, giving an expression for the generating function and both a closed and a recursive formula for its coefficients. For strong-Baxter permutations, we show that their generating function is (a slight modification of) that of a family of walks in the quarter plane, which is known to be non D-finite.
@article{SLC_2017_78B_a18,
author = {Mathilde Bouvel and Veronica Guerrini and Andrew Rechnitzer and Simone Rinaldi},
title = {Semi-Baxter and {Strong-Baxter} {Permutations}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {78B},
year = {2017},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a18/}
}
TY - JOUR AU - Mathilde Bouvel AU - Veronica Guerrini AU - Andrew Rechnitzer AU - Simone Rinaldi TI - Semi-Baxter and Strong-Baxter Permutations JO - Séminaire lotharingien de combinatoire PY - 2017 VL - 78B PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a18/ ID - SLC_2017_78B_a18 ER -
Mathilde Bouvel; Veronica Guerrini; Andrew Rechnitzer; Simone Rinaldi. Semi-Baxter and Strong-Baxter Permutations. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a18/