Counting Faces of Nestohedra
Séminaire lotharingien de combinatoire, 78B (2017)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
A new algebraic formula for the numbers of faces of nestohedra is obtained. The enumerator function F(PB) of positive lattice points in interiors of maximal cones of the normal fan of the nestohedron PB associated to a building set B is described as a morphism from the certain combinatorial Hopf algebra of building sets to quasisymmetric functions. We define the q-analog Fq(PB) and derive its determining recurrence relations. The f-polynomial of the nestohedron PB appears as the principal specialization of the quasisymmetric function Fq(PB).
@article{SLC_2017_78B_a16,
author = {Vladimir Gruji\'c and Tanja Stojadinovi\'c},
title = {Counting {Faces} of {Nestohedra}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {78B},
year = {2017},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a16/}
}
Vladimir Grujić; Tanja Stojadinović. Counting Faces of Nestohedra. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a16/