Minimal Length Maximal Green Sequences
Séminaire lotharingien de combinatoire, 78B (2017)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
Maximal green sequences are important objects in representation theory, cluster algebras, and string theory. It is an open problem to determine what lengths are achieved by maximal green sequences of a quiver. We use the combinatorics of surface triangulations to address this problem. Our main result is a formula for the length of minimal length maximal green sequences of quivers defined by triangulations of an annulus or a punctured disk.
@article{SLC_2017_78B_a15,
author = {Alexander Garver and Thomas McConville amd Khrystyna Serhiyenko},
title = {Minimal {Length} {Maximal} {Green} {Sequences}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2017},
volume = {78B},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a15/}
}
Alexander Garver; Thomas McConville amd Khrystyna Serhiyenko. Minimal Length Maximal Green Sequences. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a15/