Minimal Length Maximal Green Sequences
Séminaire lotharingien de combinatoire, 78B (2017)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Maximal green sequences are important objects in representation theory, cluster algebras, and string theory. It is an open problem to determine what lengths are achieved by maximal green sequences of a quiver. We use the combinatorics of surface triangulations to address this problem. Our main result is a formula for the length of minimal length maximal green sequences of quivers defined by triangulations of an annulus or a punctured disk.

@article{SLC_2017_78B_a15,
     author = {Alexander Garver and Thomas McConville amd Khrystyna Serhiyenko},
     title = {Minimal {Length} {Maximal} {Green} {Sequences}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {78B},
     year = {2017},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a15/}
}
TY  - JOUR
AU  - Alexander Garver
AU  - Thomas McConville amd Khrystyna Serhiyenko
TI  - Minimal Length Maximal Green Sequences
JO  - Séminaire lotharingien de combinatoire
PY  - 2017
VL  - 78B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a15/
ID  - SLC_2017_78B_a15
ER  - 
%0 Journal Article
%A Alexander Garver
%A Thomas McConville amd Khrystyna Serhiyenko
%T Minimal Length Maximal Green Sequences
%J Séminaire lotharingien de combinatoire
%D 2017
%V 78B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a15/
%F SLC_2017_78B_a15
Alexander Garver; Thomas McConville amd Khrystyna Serhiyenko. Minimal Length Maximal Green Sequences. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a15/