Combalgebraic Structures on Decorated Cliques
Séminaire lotharingien de combinatoire, 78B (2017)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

A new hierarchy of combinatorial operads is introduced, involving families of regular polygons with configurations of arcs, called decorated cliques. This hierarchy contains, among others, operads on noncrossing configurations, Motzkin objects, forests, dissections of polygons, and involutions. All this is a consequence of the definition of a general functorial construction from unitary magmas to operads. We study some of its main properties and show that this construction includes the operad of bicolored noncrossing configurations and the operads of simple and double multi-tildes. We focus in more details on a suboperad of noncrossing decorated cliques by computing its presentation, its Koszul dual, and showing that it is a Koszul operad.

@article{SLC_2017_78B_a14,
     author = {Samuele Giraudo},
     title = {Combalgebraic {Structures} on {Decorated} {Cliques}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {78B},
     year = {2017},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a14/}
}
TY  - JOUR
AU  - Samuele Giraudo
TI  - Combalgebraic Structures on Decorated Cliques
JO  - Séminaire lotharingien de combinatoire
PY  - 2017
VL  - 78B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a14/
ID  - SLC_2017_78B_a14
ER  - 
%0 Journal Article
%A Samuele Giraudo
%T Combalgebraic Structures on Decorated Cliques
%J Séminaire lotharingien de combinatoire
%D 2017
%V 78B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a14/
%F SLC_2017_78B_a14
Samuele Giraudo. Combalgebraic Structures on Decorated Cliques. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a14/