Shifted Hecke insertion and K-theory of OG(n,2n+1)
Séminaire lotharingien de combinatoire, 78B (2017)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Patrias and Pylyavskyy introduced shifted Hecke insertion as an application of their theory of dual filtered graphs. We show that shifted Hecke insertion has a natural place in the combinatorial study of the K-theory of the maximal orthogonal Grassmannian. In particular, we relate it to the K-theoretic jeu de taquin of Clifford-Thomas-Yong and use it to create new symmetric functions, which we use to derive a Littlewood-Richardson rule for the K-theory of the orthogonal Grassmannian equivalent to the rules of Clifford-Thomas-Yong and Buch-Samuel.

@article{SLC_2017_78B_a13,
     author = {Zachary Hamaker and Adam Keilthy and Rebecca Patrias and Lillian Webster and Yinuo Zhang and Shuqi Zhou},
     title = {Shifted {Hecke} insertion and {K-theory} of {OG(n,2n+1)}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {78B},
     year = {2017},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a13/}
}
TY  - JOUR
AU  - Zachary Hamaker
AU  - Adam Keilthy
AU  - Rebecca Patrias
AU  - Lillian Webster
AU  - Yinuo Zhang
AU  - Shuqi Zhou
TI  - Shifted Hecke insertion and K-theory of OG(n,2n+1)
JO  - Séminaire lotharingien de combinatoire
PY  - 2017
VL  - 78B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a13/
ID  - SLC_2017_78B_a13
ER  - 
%0 Journal Article
%A Zachary Hamaker
%A Adam Keilthy
%A Rebecca Patrias
%A Lillian Webster
%A Yinuo Zhang
%A Shuqi Zhou
%T Shifted Hecke insertion and K-theory of OG(n,2n+1)
%J Séminaire lotharingien de combinatoire
%D 2017
%V 78B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a13/
%F SLC_2017_78B_a13
Zachary Hamaker; Adam Keilthy; Rebecca Patrias; Lillian Webster; Yinuo Zhang; Shuqi Zhou. Shifted Hecke insertion and K-theory of OG(n,2n+1). Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a13/