Shifted Hecke insertion and K-theory of OG(n,2n+1)
Séminaire lotharingien de combinatoire, 78B (2017)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Patrias and Pylyavskyy introduced shifted Hecke insertion as an application of their theory of dual filtered graphs. We show that shifted Hecke insertion has a natural place in the combinatorial study of the K-theory of the maximal orthogonal Grassmannian. In particular, we relate it to the K-theoretic jeu de taquin of Clifford-Thomas-Yong and use it to create new symmetric functions, which we use to derive a Littlewood-Richardson rule for the K-theory of the orthogonal Grassmannian equivalent to the rules of Clifford-Thomas-Yong and Buch-Samuel.
@article{SLC_2017_78B_a13,
author = {Zachary Hamaker and Adam Keilthy and Rebecca Patrias and Lillian Webster and Yinuo Zhang and Shuqi Zhou},
title = {Shifted {Hecke} insertion and {K-theory} of {OG(n,2n+1)}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {78B},
year = {2017},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a13/}
}
TY - JOUR AU - Zachary Hamaker AU - Adam Keilthy AU - Rebecca Patrias AU - Lillian Webster AU - Yinuo Zhang AU - Shuqi Zhou TI - Shifted Hecke insertion and K-theory of OG(n,2n+1) JO - Séminaire lotharingien de combinatoire PY - 2017 VL - 78B PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a13/ ID - SLC_2017_78B_a13 ER -
%0 Journal Article %A Zachary Hamaker %A Adam Keilthy %A Rebecca Patrias %A Lillian Webster %A Yinuo Zhang %A Shuqi Zhou %T Shifted Hecke insertion and K-theory of OG(n,2n+1) %J Séminaire lotharingien de combinatoire %D 2017 %V 78B %I mathdoc %U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a13/ %F SLC_2017_78B_a13
Zachary Hamaker; Adam Keilthy; Rebecca Patrias; Lillian Webster; Yinuo Zhang; Shuqi Zhou. Shifted Hecke insertion and K-theory of OG(n,2n+1). Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a13/