Shifted Hecke insertion and K-theory of OG(n,2n+1)
Séminaire lotharingien de combinatoire, 78B (2017)
Patrias and Pylyavskyy introduced shifted Hecke insertion as an application of their theory of dual filtered graphs. We show that shifted Hecke insertion has a natural place in the combinatorial study of the K-theory of the maximal orthogonal Grassmannian. In particular, we relate it to the K-theoretic jeu de taquin of Clifford-Thomas-Yong and use it to create new symmetric functions, which we use to derive a Littlewood-Richardson rule for the K-theory of the orthogonal Grassmannian equivalent to the rules of Clifford-Thomas-Yong and Buch-Samuel.
@article{SLC_2017_78B_a13,
author = {Zachary Hamaker and Adam Keilthy and Rebecca Patrias and Lillian Webster and Yinuo Zhang and Shuqi Zhou},
title = {Shifted {Hecke} insertion and {K-theory} of {OG(n,2n+1)}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2017},
volume = {78B},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a13/}
}
TY - JOUR AU - Zachary Hamaker AU - Adam Keilthy AU - Rebecca Patrias AU - Lillian Webster AU - Yinuo Zhang AU - Shuqi Zhou TI - Shifted Hecke insertion and K-theory of OG(n,2n+1) JO - Séminaire lotharingien de combinatoire PY - 2017 VL - 78B UR - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a13/ ID - SLC_2017_78B_a13 ER -
%0 Journal Article %A Zachary Hamaker %A Adam Keilthy %A Rebecca Patrias %A Lillian Webster %A Yinuo Zhang %A Shuqi Zhou %T Shifted Hecke insertion and K-theory of OG(n,2n+1) %J Séminaire lotharingien de combinatoire %D 2017 %V 78B %U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a13/ %F SLC_2017_78B_a13
Zachary Hamaker; Adam Keilthy; Rebecca Patrias; Lillian Webster; Yinuo Zhang; Shuqi Zhou. Shifted Hecke insertion and K-theory of OG(n,2n+1). Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a13/