Infinitesimal Change of Stable Basis
Séminaire lotharingien de combinatoire, 78B (2017)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
The purpose of this note is to study the Maulik-Okounkov K-theoretic stable basis for the Hilbert scheme of points on the plane, which depends on a "slope" m in R. When m = a/b is rational, we study the change of stable basis from slope m-ε to m+ε for small ε>0, and conjecture that it is related to the Leclerc-Thibon conjugation in the q-Fock space for Uqgl^b. This is part of a wide framework of connections involving derived categories of quantized Hilbert schemes, modules for rational Cherednik algebras and Hecke algebras at roots of unity.
@article{SLC_2017_78B_a0,
author = {Eugene Gorsky and Andrei Negut},
title = {Infinitesimal {Change} of {Stable} {Basis}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2017},
volume = {78B},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a0/}
}
Eugene Gorsky; Andrei Negut. Infinitesimal Change of Stable Basis. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a0/