Infinitesimal Change of Stable Basis
Séminaire lotharingien de combinatoire, 78B (2017)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

The purpose of this note is to study the Maulik-Okounkov K-theoretic stable basis for the Hilbert scheme of points on the plane, which depends on a "slope" m in R. When m = a/b is rational, we study the change of stable basis from slope m-ε to m+ε for small ε>0, and conjecture that it is related to the Leclerc-Thibon conjugation in the q-Fock space for Uqgl^b. This is part of a wide framework of connections involving derived categories of quantized Hilbert schemes, modules for rational Cherednik algebras and Hecke algebras at roots of unity.

@article{SLC_2017_78B_a0,
     author = {Eugene Gorsky and Andrei Negut},
     title = {Infinitesimal {Change} of {Stable} {Basis}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {78B},
     year = {2017},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a0/}
}
TY  - JOUR
AU  - Eugene Gorsky
AU  - Andrei Negut
TI  - Infinitesimal Change of Stable Basis
JO  - Séminaire lotharingien de combinatoire
PY  - 2017
VL  - 78B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a0/
ID  - SLC_2017_78B_a0
ER  - 
%0 Journal Article
%A Eugene Gorsky
%A Andrei Negut
%T Infinitesimal Change of Stable Basis
%J Séminaire lotharingien de combinatoire
%D 2017
%V 78B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a0/
%F SLC_2017_78B_a0
Eugene Gorsky; Andrei Negut. Infinitesimal Change of Stable Basis. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a0/