Infinitesimal Change of Stable Basis
Séminaire lotharingien de combinatoire, 78B (2017)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
The purpose of this note is to study the Maulik-Okounkov K-theoretic stable basis for the Hilbert scheme of points on the plane, which depends on a "slope" m in R. When m = a/b is rational, we study the change of stable basis from slope m-ε to m+ε for small ε>0, and conjecture that it is related to the Leclerc-Thibon conjugation in the q-Fock space for Uqgl^b. This is part of a wide framework of connections involving derived categories of quantized Hilbert schemes, modules for rational Cherednik algebras and Hecke algebras at roots of unity.
@article{SLC_2017_78B_a0,
author = {Eugene Gorsky and Andrei Negut},
title = {Infinitesimal {Change} of {Stable} {Basis}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {78B},
year = {2017},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a0/}
}
Eugene Gorsky; Andrei Negut. Infinitesimal Change of Stable Basis. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a0/