Infinitesimal Change of Stable Basis
Séminaire lotharingien de combinatoire, 78B (2017) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

The purpose of this note is to study the Maulik-Okounkov K-theoretic stable basis for the Hilbert scheme of points on the plane, which depends on a "slope" m in R. When m = a/b is rational, we study the change of stable basis from slope m-ε to m+ε for small ε>0, and conjecture that it is related to the Leclerc-Thibon conjugation in the q-Fock space for Uqgl^b. This is part of a wide framework of connections involving derived categories of quantized Hilbert schemes, modules for rational Cherednik algebras and Hecke algebras at roots of unity.

@article{SLC_2017_78B_a0,
     author = {Eugene Gorsky and Andrei Negut},
     title = {Infinitesimal {Change} of {Stable} {Basis}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {2017},
     volume = {78B},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a0/}
}
TY  - JOUR
AU  - Eugene Gorsky
AU  - Andrei Negut
TI  - Infinitesimal Change of Stable Basis
JO  - Séminaire lotharingien de combinatoire
PY  - 2017
VL  - 78B
UR  - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a0/
ID  - SLC_2017_78B_a0
ER  - 
%0 Journal Article
%A Eugene Gorsky
%A Andrei Negut
%T Infinitesimal Change of Stable Basis
%J Séminaire lotharingien de combinatoire
%D 2017
%V 78B
%U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a0/
%F SLC_2017_78B_a0
Eugene Gorsky; Andrei Negut. Infinitesimal Change of Stable Basis. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a0/