Gamma-Positivity in Combinatorics and Geometry
Séminaire lotharingien de combinatoire, Tome 77 (2017-2018)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Gamma-positivity is an elementary property that polynomials with symmetric coefficients may have, which directly implies their unimodality. The idea behind it stems from work of Foata, Schützenberger and Strehl on the Eulerian polynomials; it was revived independently by Brändén and Gal in the course of their study of poset Eulerian polynomials and face enumeration of flag simplicial spheres, respectively, and has found numerous applications since then. This paper surveys some of the main results and open problems on gamma-positivity, appearing in various combinatorial or geometric contexts, as well as some of the diverse methods that have been used to prove it.

@article{SLC_2017-2018_77_a8,
     author = {Christos Athanasiadis},
     title = {Gamma-Positivity in {Combinatorics} and {Geometry}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {77},
     year = {2017-2018},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017-2018_77_a8/}
}
TY  - JOUR
AU  - Christos Athanasiadis
TI  - Gamma-Positivity in Combinatorics and Geometry
JO  - Séminaire lotharingien de combinatoire
PY  - 2017-2018
VL  - 77
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2017-2018_77_a8/
ID  - SLC_2017-2018_77_a8
ER  - 
%0 Journal Article
%A Christos Athanasiadis
%T Gamma-Positivity in Combinatorics and Geometry
%J Séminaire lotharingien de combinatoire
%D 2017-2018
%V 77
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2017-2018_77_a8/
%F SLC_2017-2018_77_a8
Christos Athanasiadis. Gamma-Positivity in Combinatorics and Geometry. Séminaire lotharingien de combinatoire, Tome 77 (2017-2018). http://geodesic.mathdoc.fr/item/SLC_2017-2018_77_a8/