Divisionally free Restrictions of Reflection Arrangements
Séminaire lotharingien de combinatoire, Tome 77 (2017-2018)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We study some aspects of divisionally free arrangements which were recently introduced by Abe. Crucially, Terao's conjecture on the combinatorial nature of freeness holds within this class. We show that while it is compatible with products, surprisingly, it is not closed under taking localizations. In addition, we determine all divisionally free restrictions of all reflection arrangements.

@article{SLC_2017-2018_77_a4,
     author = {Gerhard R\"ohrle},
     title = {Divisionally free {Restrictions} of {Reflection} {Arrangements}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {77},
     year = {2017-2018},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017-2018_77_a4/}
}
TY  - JOUR
AU  - Gerhard Röhrle
TI  - Divisionally free Restrictions of Reflection Arrangements
JO  - Séminaire lotharingien de combinatoire
PY  - 2017-2018
VL  - 77
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2017-2018_77_a4/
ID  - SLC_2017-2018_77_a4
ER  - 
%0 Journal Article
%A Gerhard Röhrle
%T Divisionally free Restrictions of Reflection Arrangements
%J Séminaire lotharingien de combinatoire
%D 2017-2018
%V 77
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2017-2018_77_a4/
%F SLC_2017-2018_77_a4
Gerhard Röhrle. Divisionally free Restrictions of Reflection Arrangements. Séminaire lotharingien de combinatoire, Tome 77 (2017-2018). http://geodesic.mathdoc.fr/item/SLC_2017-2018_77_a4/