Kronecker Coefficients For One Hook Shape
Séminaire lotharingien de combinatoire, Tome 77 (2017-2018)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We give a positive combinatorial formula for the Kronecker coefficient gλ μ(d) ν for any partitions λ, ν of n and hook shape μ(d) := (n-d,1d). Our main tool is Haiman's mixed insertion. This is a generalization of Schensted insertion to colored words, words in the alphabet of barred letters 1-, 2-, ... and unbarred letters 1, 2, ... We define the set of colored Yamanouchi tableaux of content λ and total color d (CYTλ,d) to be the set of mixed insertion tableaux of colored words w with exactly d barred letters and such that wblft is a Yamanouchi word of content λ, where wblft is the ordinary word formed from w by shuffling its barred letters to the left and then removing their bars. We prove that gλ μ(d) ν is equal to the number of CYTλ,d of shape ν with unbarred southwest corner.
@article{SLC_2017-2018_77_a2,
author = {Jonah Blasiak},
title = {Kronecker {Coefficients} {For} {One} {Hook} {Shape}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {77},
year = {2017-2018},
url = {http://geodesic.mathdoc.fr/item/SLC_2017-2018_77_a2/}
}
Jonah Blasiak. Kronecker Coefficients For One Hook Shape. Séminaire lotharingien de combinatoire, Tome 77 (2017-2018). http://geodesic.mathdoc.fr/item/SLC_2017-2018_77_a2/