Poset Structures on (m+2)-angulations and Polynomial Bases of the Quotient by Gm-Quasisymmetric Functions
Séminaire lotharingien de combinatoire, Tome 77 (2017-2018)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

For integers m, n >= 1, we describe a bijection sending dissections of the (mn+2)-regular polygon into (m+2)-sided polygons to a new basis of the quotient of the polynomial algebra in mn variables by an ideal generated by some kind of higher quasi-symmetric functions. We show that divisibility of the basis elements corresponds to a new partial order on dissections, which is studied in some detail.

@article{SLC_2017-2018_77_a1,
     author = {Jean-Christophe Aval and Fr\'ed\'eric Chapoton},
     title = {Poset {Structures} on (m+2)-angulations and {Polynomial} {Bases} of the {Quotient} by {Gm-Quasisymmetric} {Functions}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {77},
     year = {2017-2018},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017-2018_77_a1/}
}
TY  - JOUR
AU  - Jean-Christophe Aval
AU  - Frédéric Chapoton
TI  - Poset Structures on (m+2)-angulations and Polynomial Bases of the Quotient by Gm-Quasisymmetric Functions
JO  - Séminaire lotharingien de combinatoire
PY  - 2017-2018
VL  - 77
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2017-2018_77_a1/
ID  - SLC_2017-2018_77_a1
ER  - 
%0 Journal Article
%A Jean-Christophe Aval
%A Frédéric Chapoton
%T Poset Structures on (m+2)-angulations and Polynomial Bases of the Quotient by Gm-Quasisymmetric Functions
%J Séminaire lotharingien de combinatoire
%D 2017-2018
%V 77
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2017-2018_77_a1/
%F SLC_2017-2018_77_a1
Jean-Christophe Aval; Frédéric Chapoton. Poset Structures on (m+2)-angulations and Polynomial Bases of the Quotient by Gm-Quasisymmetric Functions. Séminaire lotharingien de combinatoire, Tome 77 (2017-2018). http://geodesic.mathdoc.fr/item/SLC_2017-2018_77_a1/