Poset Structures on (m+2)-angulations and Polynomial Bases of the Quotient by Gm-Quasisymmetric Functions
Séminaire lotharingien de combinatoire, Tome 77 (2017-2018)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
For integers m, n >= 1, we describe a bijection sending dissections of the (mn+2)-regular polygon into (m+2)-sided polygons to a new basis of the quotient of the polynomial algebra in mn variables by an ideal generated by some kind of higher quasi-symmetric functions. We show that divisibility of the basis elements corresponds to a new partial order on dissections, which is studied in some detail.
@article{SLC_2017-2018_77_a1,
author = {Jean-Christophe Aval and Fr\'ed\'eric Chapoton},
title = {Poset {Structures} on (m+2)-angulations and {Polynomial} {Bases} of the {Quotient} by {Gm-Quasisymmetric} {Functions}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {77},
year = {2017-2018},
url = {http://geodesic.mathdoc.fr/item/SLC_2017-2018_77_a1/}
}
TY - JOUR AU - Jean-Christophe Aval AU - Frédéric Chapoton TI - Poset Structures on (m+2)-angulations and Polynomial Bases of the Quotient by Gm-Quasisymmetric Functions JO - Séminaire lotharingien de combinatoire PY - 2017-2018 VL - 77 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SLC_2017-2018_77_a1/ ID - SLC_2017-2018_77_a1 ER -
%0 Journal Article %A Jean-Christophe Aval %A Frédéric Chapoton %T Poset Structures on (m+2)-angulations and Polynomial Bases of the Quotient by Gm-Quasisymmetric Functions %J Séminaire lotharingien de combinatoire %D 2017-2018 %V 77 %I mathdoc %U http://geodesic.mathdoc.fr/item/SLC_2017-2018_77_a1/ %F SLC_2017-2018_77_a1
Jean-Christophe Aval; Frédéric Chapoton. Poset Structures on (m+2)-angulations and Polynomial Bases of the Quotient by Gm-Quasisymmetric Functions. Séminaire lotharingien de combinatoire, Tome 77 (2017-2018). http://geodesic.mathdoc.fr/item/SLC_2017-2018_77_a1/