Multiplicity-free Skew Schur Functions With Full Interval Support
Séminaire lotharingien de combinatoire, Tome 75 (2016-2019)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
It is known that the Schur expansion of a skew Schur function runs over the interval of partitions, equipped with dominance order, defined by the least and the most dominant Littlewood-Richardson filling of the skew shape. We characterise skew Schur functions (and therefore the product of two Schur functions) which are multiplicity-free and the resulting Schur expansion runs over the whole interval of partitions, i.e., skew Schur functions having Littlewood-Richardson coefficients always equal to 1 over the full interval.
@article{SLC_2016-2019_75_a9, author = {Olga Azenhas and Alessandro Conflitti and Ricardo Mamede}, title = {Multiplicity-free {Skew} {Schur} {Functions} {With} {Full} {Interval} {Support}}, journal = {S\'eminaire lotharingien de combinatoire}, publisher = {mathdoc}, volume = {75}, year = {2016-2019}, url = {http://geodesic.mathdoc.fr/item/SLC_2016-2019_75_a9/} }
TY - JOUR AU - Olga Azenhas AU - Alessandro Conflitti AU - Ricardo Mamede TI - Multiplicity-free Skew Schur Functions With Full Interval Support JO - Séminaire lotharingien de combinatoire PY - 2016-2019 VL - 75 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SLC_2016-2019_75_a9/ ID - SLC_2016-2019_75_a9 ER -
Olga Azenhas; Alessandro Conflitti; Ricardo Mamede. Multiplicity-free Skew Schur Functions With Full Interval Support. Séminaire lotharingien de combinatoire, Tome 75 (2016-2019). http://geodesic.mathdoc.fr/item/SLC_2016-2019_75_a9/