Multiplicity-free Skew Schur Functions With Full Interval Support
Séminaire lotharingien de combinatoire, Tome 75 (2016-2019)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

It is known that the Schur expansion of a skew Schur function runs over the interval of partitions, equipped with dominance order, defined by the least and the most dominant Littlewood-Richardson filling of the skew shape. We characterise skew Schur functions (and therefore the product of two Schur functions) which are multiplicity-free and the resulting Schur expansion runs over the whole interval of partitions, i.e., skew Schur functions having Littlewood-Richardson coefficients always equal to 1 over the full interval.

@article{SLC_2016-2019_75_a9,
     author = {Olga Azenhas and Alessandro Conflitti and Ricardo Mamede},
     title = {Multiplicity-free {Skew} {Schur} {Functions} {With} {Full} {Interval} {Support}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {75},
     year = {2016-2019},
     url = {http://geodesic.mathdoc.fr/item/SLC_2016-2019_75_a9/}
}
TY  - JOUR
AU  - Olga Azenhas
AU  - Alessandro Conflitti
AU  - Ricardo Mamede
TI  - Multiplicity-free Skew Schur Functions With Full Interval Support
JO  - Séminaire lotharingien de combinatoire
PY  - 2016-2019
VL  - 75
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2016-2019_75_a9/
ID  - SLC_2016-2019_75_a9
ER  - 
%0 Journal Article
%A Olga Azenhas
%A Alessandro Conflitti
%A Ricardo Mamede
%T Multiplicity-free Skew Schur Functions With Full Interval Support
%J Séminaire lotharingien de combinatoire
%D 2016-2019
%V 75
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2016-2019_75_a9/
%F SLC_2016-2019_75_a9
Olga Azenhas; Alessandro Conflitti; Ricardo Mamede. Multiplicity-free Skew Schur Functions With Full Interval Support. Séminaire lotharingien de combinatoire, Tome 75 (2016-2019). http://geodesic.mathdoc.fr/item/SLC_2016-2019_75_a9/