Odd Partitions in Young's Lattice
Séminaire lotharingien de combinatoire, Tome 75 (2016-2019)
We show that the subgraph induced in Young's graph by the set of partitions with an odd number of standard Young tableaux is a binary tree. This tree exhibits self-similarities at all scales, and has a simple recursive description.
@article{SLC_2016-2019_75_a6,
author = {Arvind Ayyer and Amritanshu Prasad and Steven Spallone},
title = {Odd {Partitions} in {Young's} {Lattice}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2016-2019},
volume = {75},
url = {http://geodesic.mathdoc.fr/item/SLC_2016-2019_75_a6/}
}
Arvind Ayyer; Amritanshu Prasad; Steven Spallone. Odd Partitions in Young's Lattice. Séminaire lotharingien de combinatoire, Tome 75 (2016-2019). http://geodesic.mathdoc.fr/item/SLC_2016-2019_75_a6/