Odd Partitions in Young's Lattice
Séminaire lotharingien de combinatoire, Tome 75 (2016-2019)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We show that the subgraph induced in Young's graph by the set of partitions with an odd number of standard Young tableaux is a binary tree. This tree exhibits self-similarities at all scales, and has a simple recursive description.
@article{SLC_2016-2019_75_a6,
author = {Arvind Ayyer and Amritanshu Prasad and Steven Spallone},
title = {Odd {Partitions} in {Young's} {Lattice}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {75},
year = {2016-2019},
url = {http://geodesic.mathdoc.fr/item/SLC_2016-2019_75_a6/}
}
Arvind Ayyer; Amritanshu Prasad; Steven Spallone. Odd Partitions in Young's Lattice. Séminaire lotharingien de combinatoire, Tome 75 (2016-2019). http://geodesic.mathdoc.fr/item/SLC_2016-2019_75_a6/