Torus Fixed Points in Schubert Varieties and Normalized Median Genocchi Numbers
Séminaire lotharingien de combinatoire, Tome 75 (2016-2019)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We give a new proof for the fact that the number of torus fixed points for the degenerate flag variety is equal to the normalized median Genocchi number, using the identification with a certain Schubert variety. We further study the torus fixed points for the symplectic degenerate flag variety and develop a combinatorial model, symplectic Dellac configurations, to parametrize them. The number of these symplectic fixed points is conjectured to be a median Euler number.
@article{SLC_2016-2019_75_a5,
author = {Xin Fang and Ghislain Fourier},
title = {Torus {Fixed} {Points} in {Schubert} {Varieties} and {Normalized} {Median} {Genocchi} {Numbers}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {75},
year = {2016-2019},
url = {http://geodesic.mathdoc.fr/item/SLC_2016-2019_75_a5/}
}
Xin Fang; Ghislain Fourier. Torus Fixed Points in Schubert Varieties and Normalized Median Genocchi Numbers. Séminaire lotharingien de combinatoire, Tome 75 (2016-2019). http://geodesic.mathdoc.fr/item/SLC_2016-2019_75_a5/