Torus Fixed Points in Schubert Varieties and Normalized Median Genocchi Numbers
Séminaire lotharingien de combinatoire, Tome 75 (2016-2019)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We give a new proof for the fact that the number of torus fixed points for the degenerate flag variety is equal to the normalized median Genocchi number, using the identification with a certain Schubert variety. We further study the torus fixed points for the symplectic degenerate flag variety and develop a combinatorial model, symplectic Dellac configurations, to parametrize them. The number of these symplectic fixed points is conjectured to be a median Euler number.

@article{SLC_2016-2019_75_a5,
     author = {Xin Fang and Ghislain Fourier},
     title = {Torus {Fixed} {Points} in {Schubert} {Varieties} and {Normalized} {Median} {Genocchi} {Numbers}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {75},
     year = {2016-2019},
     url = {http://geodesic.mathdoc.fr/item/SLC_2016-2019_75_a5/}
}
TY  - JOUR
AU  - Xin Fang
AU  - Ghislain Fourier
TI  - Torus Fixed Points in Schubert Varieties and Normalized Median Genocchi Numbers
JO  - Séminaire lotharingien de combinatoire
PY  - 2016-2019
VL  - 75
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2016-2019_75_a5/
ID  - SLC_2016-2019_75_a5
ER  - 
%0 Journal Article
%A Xin Fang
%A Ghislain Fourier
%T Torus Fixed Points in Schubert Varieties and Normalized Median Genocchi Numbers
%J Séminaire lotharingien de combinatoire
%D 2016-2019
%V 75
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2016-2019_75_a5/
%F SLC_2016-2019_75_a5
Xin Fang; Ghislain Fourier. Torus Fixed Points in Schubert Varieties and Normalized Median Genocchi Numbers. Séminaire lotharingien de combinatoire, Tome 75 (2016-2019). http://geodesic.mathdoc.fr/item/SLC_2016-2019_75_a5/