A Simple Explicit Bijection Between (n,2)-Gog and Magog Trapezoids
Séminaire lotharingien de combinatoire, Tome 75 (2016-2019)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
A sub-problem of the open problem of finding an explicit bijection between alternating sign matrices and totally symmetric self-complementary plane partitions consists in finding an explicit bijection between so-called (n,k)-Gog trapezoids and (n,k)-Magog trapezoids. A quite involved bijection was found by Biane and Cheballah in the case k=2. We give here a simpler bijection for this case.
@article{SLC_2016-2019_75_a4,
author = {J\'er\'emie Bettinelli},
title = {A {Simple} {Explicit} {Bijection} {Between} {(n,2)-Gog} and {Magog} {Trapezoids}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {75},
year = {2016-2019},
url = {http://geodesic.mathdoc.fr/item/SLC_2016-2019_75_a4/}
}
Jérémie Bettinelli. A Simple Explicit Bijection Between (n,2)-Gog and Magog Trapezoids. Séminaire lotharingien de combinatoire, Tome 75 (2016-2019). http://geodesic.mathdoc.fr/item/SLC_2016-2019_75_a4/