Permanent Versus Determinant, Obstructions, and Kronecker Coefficients
Séminaire lotharingien de combinatoire, Tome 75 (2016-2019)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We give an introduction to some of the recent ideas that go under the name "geometric complexity theory". We first sketch the proof of the known upper and lower bounds for the determinantal complexity of the permanent. We then introduce the concept of a representation theoretic obstruction, which has close links to algebraic combinatorics, and we explain some of the insights gained so far. In particular, we address very recent insights on the complexity of testing the positivity of Kronecker coefficients. We also briefly discuss the related asymptotic version of this question.
@article{SLC_2016-2019_75_a0,
author = {Peter B\"urgisser},
title = {Permanent {Versus} {Determinant,} {Obstructions,} and {Kronecker} {Coefficients}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {75},
year = {2016-2019},
url = {http://geodesic.mathdoc.fr/item/SLC_2016-2019_75_a0/}
}
Peter Bürgisser. Permanent Versus Determinant, Obstructions, and Kronecker Coefficients. Séminaire lotharingien de combinatoire, Tome 75 (2016-2019). http://geodesic.mathdoc.fr/item/SLC_2016-2019_75_a0/