SL2-Tilings Do Not Exist in Higher Dimensions (mostly)
Séminaire lotharingien de combinatoire, Tome 76 (2016-2018)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We define a family of generalizations of SL2-tilings to higher dimensions called ε-SL2-tilings. We show that, in each dimension 3 or greater, ε-SL2-tilings exist only for certain choices of ε. In the case that they exist, we show that they are essentially unique and have a concrete description in terms of odd Fibonacci numbers.
@article{SLC_2016-2018_76_a4,
author = {Laurent Demonet and Pierre-Guy Plamondon and Dylan Rupel and Salvatore Stella and Pavel Tumarkin},
title = {SL2-Tilings {Do} {Not} {Exist} in {Higher} {Dimensions} (mostly)},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {76},
year = {2016-2018},
url = {http://geodesic.mathdoc.fr/item/SLC_2016-2018_76_a4/}
}
TY - JOUR AU - Laurent Demonet AU - Pierre-Guy Plamondon AU - Dylan Rupel AU - Salvatore Stella AU - Pavel Tumarkin TI - SL2-Tilings Do Not Exist in Higher Dimensions (mostly) JO - Séminaire lotharingien de combinatoire PY - 2016-2018 VL - 76 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SLC_2016-2018_76_a4/ ID - SLC_2016-2018_76_a4 ER -
%0 Journal Article %A Laurent Demonet %A Pierre-Guy Plamondon %A Dylan Rupel %A Salvatore Stella %A Pavel Tumarkin %T SL2-Tilings Do Not Exist in Higher Dimensions (mostly) %J Séminaire lotharingien de combinatoire %D 2016-2018 %V 76 %I mathdoc %U http://geodesic.mathdoc.fr/item/SLC_2016-2018_76_a4/ %F SLC_2016-2018_76_a4
Laurent Demonet; Pierre-Guy Plamondon; Dylan Rupel; Salvatore Stella; Pavel Tumarkin. SL2-Tilings Do Not Exist in Higher Dimensions (mostly). Séminaire lotharingien de combinatoire, Tome 76 (2016-2018). http://geodesic.mathdoc.fr/item/SLC_2016-2018_76_a4/