SL2-Tilings Do Not Exist in Higher Dimensions (mostly)
Séminaire lotharingien de combinatoire, Tome 76 (2016-2018)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We define a family of generalizations of SL2-tilings to higher dimensions called ε-SL2-tilings. We show that, in each dimension 3 or greater, ε-SL2-tilings exist only for certain choices of ε. In the case that they exist, we show that they are essentially unique and have a concrete description in terms of odd Fibonacci numbers.

@article{SLC_2016-2018_76_a4,
     author = {Laurent Demonet and Pierre-Guy Plamondon and Dylan Rupel and Salvatore Stella and Pavel Tumarkin},
     title = {SL2-Tilings {Do} {Not} {Exist} in {Higher} {Dimensions} (mostly)},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {76},
     year = {2016-2018},
     url = {http://geodesic.mathdoc.fr/item/SLC_2016-2018_76_a4/}
}
TY  - JOUR
AU  - Laurent Demonet
AU  - Pierre-Guy Plamondon
AU  - Dylan Rupel
AU  - Salvatore Stella
AU  - Pavel Tumarkin
TI  - SL2-Tilings Do Not Exist in Higher Dimensions (mostly)
JO  - Séminaire lotharingien de combinatoire
PY  - 2016-2018
VL  - 76
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2016-2018_76_a4/
ID  - SLC_2016-2018_76_a4
ER  - 
%0 Journal Article
%A Laurent Demonet
%A Pierre-Guy Plamondon
%A Dylan Rupel
%A Salvatore Stella
%A Pavel Tumarkin
%T SL2-Tilings Do Not Exist in Higher Dimensions (mostly)
%J Séminaire lotharingien de combinatoire
%D 2016-2018
%V 76
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2016-2018_76_a4/
%F SLC_2016-2018_76_a4
Laurent Demonet; Pierre-Guy Plamondon; Dylan Rupel; Salvatore Stella; Pavel Tumarkin. SL2-Tilings Do Not Exist in Higher Dimensions (mostly). Séminaire lotharingien de combinatoire, Tome 76 (2016-2018). http://geodesic.mathdoc.fr/item/SLC_2016-2018_76_a4/