Non-Symmetric Macdonald Polynomials and Demazure-Lusztig Operators
Séminaire lotharingien de combinatoire, Tome 76 (2016-2018)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We extend the family non-symmetric Macdonald polynomials and define permuted-basement Macdonald polynomials. We show that these also satisfy a triangularity property with respect to the monomial basis and behave well under the Demazure-Lusztig operators. The symmetric Macdonald polynomials Pλ are expressed as a sum of permuted-basement Macdonald polynomials via an explicit formula.
By letting q=0, we obtain t-deformations of key polynomials and Demazure atoms and we show that the Hall-Littlewood polynomials expand positively into these deformations. This generalizes a result by Haglund, Luoto, Mason and van Willigenburg. As a corollary, the Schur polynomials decompose with non-negative coefficients into t-deformations of general Demazure atoms and thus generalize the t=0 case which was previously known. This gives a unified formula for the classical expansion of Schur polynomials in Hall-Littlewood polynomials and the expansion of Schur polynomials into Demazure atoms.
@article{SLC_2016-2018_76_a3,
author = {Per Alexandersson},
title = {Non-Symmetric {Macdonald} {Polynomials} and {Demazure-Lusztig} {Operators}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {76},
year = {2016-2018},
url = {http://geodesic.mathdoc.fr/item/SLC_2016-2018_76_a3/}
}
Per Alexandersson. Non-Symmetric Macdonald Polynomials and Demazure-Lusztig Operators. Séminaire lotharingien de combinatoire, Tome 76 (2016-2018). http://geodesic.mathdoc.fr/item/SLC_2016-2018_76_a3/