Non-Symmetric Macdonald Polynomials and Demazure-Lusztig Operators
Séminaire lotharingien de combinatoire, Tome 76 (2016-2018)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We extend the family non-symmetric Macdonald polynomials and define permuted-basement Macdonald polynomials. We show that these also satisfy a triangularity property with respect to the monomial basis and behave well under the Demazure-Lusztig operators. The symmetric Macdonald polynomials Pλ are expressed as a sum of permuted-basement Macdonald polynomials via an explicit formula.

By letting q=0, we obtain t-deformations of key polynomials and Demazure atoms and we show that the Hall-Littlewood polynomials expand positively into these deformations. This generalizes a result by Haglund, Luoto, Mason and van Willigenburg. As a corollary, the Schur polynomials decompose with non-negative coefficients into t-deformations of general Demazure atoms and thus generalize the t=0 case which was previously known. This gives a unified formula for the classical expansion of Schur polynomials in Hall-Littlewood polynomials and the expansion of Schur polynomials into Demazure atoms.

@article{SLC_2016-2018_76_a3,
     author = {Per Alexandersson},
     title = {Non-Symmetric {Macdonald} {Polynomials} and {Demazure-Lusztig} {Operators}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {76},
     year = {2016-2018},
     url = {http://geodesic.mathdoc.fr/item/SLC_2016-2018_76_a3/}
}
TY  - JOUR
AU  - Per Alexandersson
TI  - Non-Symmetric Macdonald Polynomials and Demazure-Lusztig Operators
JO  - Séminaire lotharingien de combinatoire
PY  - 2016-2018
VL  - 76
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2016-2018_76_a3/
ID  - SLC_2016-2018_76_a3
ER  - 
%0 Journal Article
%A Per Alexandersson
%T Non-Symmetric Macdonald Polynomials and Demazure-Lusztig Operators
%J Séminaire lotharingien de combinatoire
%D 2016-2018
%V 76
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2016-2018_76_a3/
%F SLC_2016-2018_76_a3
Per Alexandersson. Non-Symmetric Macdonald Polynomials and Demazure-Lusztig Operators. Séminaire lotharingien de combinatoire, Tome 76 (2016-2018). http://geodesic.mathdoc.fr/item/SLC_2016-2018_76_a3/