Lacunary Generating Functions for the Laguerre Polynomials
Séminaire lotharingien de combinatoire, Tome 76 (2016-2018)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Symbolic methods of umbral nature play an important and increasing role in the theory of special functions and in related fields like combinatorics. We discuss an application of these methods to the theory of lacunary generating functions for the Laguerre polynomials for which we give a number of new closed form expressions. We present furthermore the different possibilities offered by the method we have developed, with particular emphasis on their link to a new family of special functions and with previous formulations, associated with the theory of quasi monomials.

@article{SLC_2016-2018_76_a1,
     author = {Danilo Babusci and Giuseppe Dattoli and Katarzyna G\'orska and Karol Penson},
     title = {Lacunary {Generating} {Functions} for the {Laguerre} {Polynomials}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {76},
     year = {2016-2018},
     url = {http://geodesic.mathdoc.fr/item/SLC_2016-2018_76_a1/}
}
TY  - JOUR
AU  - Danilo Babusci
AU  - Giuseppe Dattoli
AU  - Katarzyna Górska
AU  - Karol Penson
TI  - Lacunary Generating Functions for the Laguerre Polynomials
JO  - Séminaire lotharingien de combinatoire
PY  - 2016-2018
VL  - 76
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2016-2018_76_a1/
ID  - SLC_2016-2018_76_a1
ER  - 
%0 Journal Article
%A Danilo Babusci
%A Giuseppe Dattoli
%A Katarzyna Górska
%A Karol Penson
%T Lacunary Generating Functions for the Laguerre Polynomials
%J Séminaire lotharingien de combinatoire
%D 2016-2018
%V 76
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2016-2018_76_a1/
%F SLC_2016-2018_76_a1
Danilo Babusci; Giuseppe Dattoli; Katarzyna Górska; Karol Penson. Lacunary Generating Functions for the Laguerre Polynomials. Séminaire lotharingien de combinatoire, Tome 76 (2016-2018). http://geodesic.mathdoc.fr/item/SLC_2016-2018_76_a1/