Playing Jeu De Taquin on d-Complete Posets
Séminaire lotharingien de combinatoire, Tome 74 (2015-2018)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Using a modified version of jeu de taquin, Novelli, Pak and Stoyanovskii gave a bijective proof of the hook-length formula for counting standard Young tableaux of fixed shape. In this paper we consider a natural extension of jeu de taquin to arbitrary posets. Given a poset P, jeu de taquin defines a map from the set of bijective labelings of the poset elements with {1,2,...,|P|} to the set of linear extensions of the poset. One question of particular interest is for which posets this map yields each linear extension equally often. We analyze the double-tailed diamond poset Dm,n and show that uniform distribution is obtained if and only if Dm,n is d-complete. Furthermore, we observe that the extended hook-length formula for counting linear extensions on d-complete posets provides a combinatorial answer to a seemingly unrelated question, namely: Given a uniformly random standard Young tableau of fixed shape, what is the expected value of the left-most entry in the second row?
@article{SLC_2015-2018_74_a3,
author = {Lukas Riegler and Christoph Neumann},
title = {Playing {Jeu} {De} {Taquin} on {d-Complete} {Posets}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {74},
year = {2015-2018},
url = {http://geodesic.mathdoc.fr/item/SLC_2015-2018_74_a3/}
}
Lukas Riegler; Christoph Neumann. Playing Jeu De Taquin on d-Complete Posets. Séminaire lotharingien de combinatoire, Tome 74 (2015-2018). http://geodesic.mathdoc.fr/item/SLC_2015-2018_74_a3/