Graph Properties of Graph Associahedra
    
    
  
  
  
      
      
      
        
Séminaire lotharingien de combinatoire, Tome 73 (2015-2016)
    
  
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
            
              A graph associahedron is a simple polytope whose face lattice encodes the nested structure of the connected subgraphs of a given graph. In this paper, we study certain graph properties of the 1-skeleta of graph associahedra, such as their diameter and their Hamiltonicity. Our results extend known results for the classical associahedra (path associahedra) and permutahedra (complete graph associahedra). We also discuss partial extensions to the family of nestohedra. 
 
        
      
@article{SLC_2015-2016_73_a3,
     author = {Thibault Manneville and Vincent Pilaud},
     title = {Graph {Properties} of {Graph} {Associahedra}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {73},
     year = {2015-2016},
     url = {http://geodesic.mathdoc.fr/item/SLC_2015-2016_73_a3/}
}
                      
                      
                    Thibault Manneville; Vincent Pilaud. Graph Properties of Graph Associahedra. Séminaire lotharingien de combinatoire, Tome 73 (2015-2016). http://geodesic.mathdoc.fr/item/SLC_2015-2016_73_a3/
