Graph Properties of Graph Associahedra
Séminaire lotharingien de combinatoire, Tome 73 (2015-2016)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

A graph associahedron is a simple polytope whose face lattice encodes the nested structure of the connected subgraphs of a given graph. In this paper, we study certain graph properties of the 1-skeleta of graph associahedra, such as their diameter and their Hamiltonicity. Our results extend known results for the classical associahedra (path associahedra) and permutahedra (complete graph associahedra). We also discuss partial extensions to the family of nestohedra.

@article{SLC_2015-2016_73_a3,
     author = {Thibault Manneville and Vincent Pilaud},
     title = {Graph {Properties} of {Graph} {Associahedra}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {73},
     year = {2015-2016},
     url = {http://geodesic.mathdoc.fr/item/SLC_2015-2016_73_a3/}
}
TY  - JOUR
AU  - Thibault Manneville
AU  - Vincent Pilaud
TI  - Graph Properties of Graph Associahedra
JO  - Séminaire lotharingien de combinatoire
PY  - 2015-2016
VL  - 73
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2015-2016_73_a3/
ID  - SLC_2015-2016_73_a3
ER  - 
%0 Journal Article
%A Thibault Manneville
%A Vincent Pilaud
%T Graph Properties of Graph Associahedra
%J Séminaire lotharingien de combinatoire
%D 2015-2016
%V 73
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2015-2016_73_a3/
%F SLC_2015-2016_73_a3
Thibault Manneville; Vincent Pilaud. Graph Properties of Graph Associahedra. Séminaire lotharingien de combinatoire, Tome 73 (2015-2016). http://geodesic.mathdoc.fr/item/SLC_2015-2016_73_a3/