Polar Root Polytopes that are Zonotopes
Séminaire lotharingien de combinatoire, Tome 73 (2015-2016)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Let P\Phi be the root polytope of a finite irreducible crystallographic root system \Phi, i.e., the convex hull of all roots in \Phi. The polar of P\Phi, denoted P\Phi*, coincides with the union of the orbit of the fundamental alcove under the action of the Weyl group. In this paper, we determine which polytopes P\Phi* are zonotopes and which are not. The proof is constructive.
@article{SLC_2015-2016_73_a0,
author = {Paola Cellini and Mario Marietti},
title = {Polar {Root} {Polytopes} that are {Zonotopes}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {73},
year = {2015-2016},
url = {http://geodesic.mathdoc.fr/item/SLC_2015-2016_73_a0/}
}
Paola Cellini; Mario Marietti. Polar Root Polytopes that are Zonotopes. Séminaire lotharingien de combinatoire, Tome 73 (2015-2016). http://geodesic.mathdoc.fr/item/SLC_2015-2016_73_a0/