Jack Polynomials and Orientability Generating Series of Maps
    
    
  
  
  
      
      
      
        
Séminaire lotharingien de combinatoire, Tome 70 (2013-2014)
    
  
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
            
              We study Jack characters, which are the coefficients of the power-sum expansion of Jack symmetric functions with a suitable normalization. These quantities have been introduced by Lassalle who formulated some challenging conjectures about them. We conjecture the existence of a weight on non-oriented maps (i.e., graphs drawn on non-oriented surfaces) which allows to express any given Jack character as a weighted sum of some simple functions indexed by maps. We provide a candidate for this weight which gives a positive answer to our conjecture in some, but unfortunately not all, cases. In particular, it gives a positive answer for Jack characters specialized to Young diagrams of rectangular shape. This candidate weight attempts to measure, in a sense, the non-orientability of a given map. 
 
        
      
@article{SLC_2013-2014_70_a9,
     author = {Maciej Do{\l}\k{e}ga and Valentin F\'eray and Piotr \'Sniady},
     title = {Jack {Polynomials} and {Orientability} {Generating} {Series} of {Maps}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {70},
     year = {2013-2014},
     url = {http://geodesic.mathdoc.fr/item/SLC_2013-2014_70_a9/}
}
                      
                      
                    TY - JOUR AU - Maciej Dołęga AU - Valentin Féray AU - Piotr Śniady TI - Jack Polynomials and Orientability Generating Series of Maps JO - Séminaire lotharingien de combinatoire PY - 2013-2014 VL - 70 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SLC_2013-2014_70_a9/ ID - SLC_2013-2014_70_a9 ER -
Maciej Dołęga; Valentin Féray; Piotr Śniady. Jack Polynomials and Orientability Generating Series of Maps. Séminaire lotharingien de combinatoire, Tome 70 (2013-2014). http://geodesic.mathdoc.fr/item/SLC_2013-2014_70_a9/
