Conditioned One-Way Simple Random Walk and Combinatorial Representation Theory
Séminaire lotharingien de combinatoire, Tome 70 (2013-2014)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
A one-way simple random walk is a random walk in the quadrant Z+n whose increments are elements of the canonical base. In relation with representation theory of Lie algebras and superalgebras, we describe the law of such a random walk conditioned to stay in a closed octant, a semi-open octant, or other types of semi-groups. The combinatorial representation theory of these algebras allows us to describe a generalized Pitman transformation which realizes the conditioning on the set of paths of the walk. We pursue here a direction initiated by O'Connell and his coauthors, and also developed by the authors.
@article{SLC_2013-2014_70_a1,
author = {C\'edric Lecouvey and Emmanuel Lesigne and Marc Peign\'e},
title = {Conditioned {One-Way} {Simple} {Random} {Walk} and {Combinatorial} {Representation} {Theory}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {70},
year = {2013-2014},
url = {http://geodesic.mathdoc.fr/item/SLC_2013-2014_70_a1/}
}
TY - JOUR AU - Cédric Lecouvey AU - Emmanuel Lesigne AU - Marc Peigné TI - Conditioned One-Way Simple Random Walk and Combinatorial Representation Theory JO - Séminaire lotharingien de combinatoire PY - 2013-2014 VL - 70 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SLC_2013-2014_70_a1/ ID - SLC_2013-2014_70_a1 ER -
%0 Journal Article %A Cédric Lecouvey %A Emmanuel Lesigne %A Marc Peigné %T Conditioned One-Way Simple Random Walk and Combinatorial Representation Theory %J Séminaire lotharingien de combinatoire %D 2013-2014 %V 70 %I mathdoc %U http://geodesic.mathdoc.fr/item/SLC_2013-2014_70_a1/ %F SLC_2013-2014_70_a1
Cédric Lecouvey; Emmanuel Lesigne; Marc Peigné. Conditioned One-Way Simple Random Walk and Combinatorial Representation Theory. Séminaire lotharingien de combinatoire, Tome 70 (2013-2014). http://geodesic.mathdoc.fr/item/SLC_2013-2014_70_a1/