Multivariate Polynomials in Sage
Séminaire lotharingien de combinatoire, Tome 66 (2011-2012)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We have developed a patch implementing multivariate polynomials seen as a multi-base algebra. The patch is to be released into the software Sage and can already be found within the Sage-Combinat distribution. One can use our patch to define a polynomial in a set of indexed variables and expand it into a linear basis of the multivariate polynomials. So far, we have the Schubert polynomials, the Key polynomials of types A, B, C, or D, the Grothendieck polynomials and the non-symmetric Macdonald polynomials. One can also use a double set of variables and work with specific double-linear bases like the double Schubert polynomials or double Grothendieck polynomials. Our implementation is based on a definition of the basis using divided difference operators and one can also define new bases using these operators.
@article{SLC_2011-2012_66_a4,
author = {Viviane Pons},
title = {Multivariate {Polynomials} in {Sage}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {66},
year = {2011-2012},
url = {http://geodesic.mathdoc.fr/item/SLC_2011-2012_66_a4/}
}
Viviane Pons. Multivariate Polynomials in Sage. Séminaire lotharingien de combinatoire, Tome 66 (2011-2012). http://geodesic.mathdoc.fr/item/SLC_2011-2012_66_a4/