Doubly-Refined Enumeration of Alternating Sign Matrices and Determinants of 2-Staircase Schur Functions
Séminaire lotharingien de combinatoire, Tome 65 (2011-2012)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We prove a determinantal identity concerning Schur functions for 2-staircase diagrams \lambda=(ln+l',ln,l(n-1)+l',l(n-1),...,l+l',l,l',0). When l=1 and l'=0 these functions are related to the partition function of the 6-vertex model at the combinatorial point and hence to enumerations of Alternating Sign Matrices. A consequence of our result is an identity concerning the doubly-refined numbers of Alternating Sign Matrices.
@article{SLC_2011-2012_65_a5,
author = {Philippe Biane and Luigi Cantini and Andrea Sportiello},
title = {Doubly-Refined {Enumeration} of {Alternating} {Sign} {Matrices} and {Determinants} of {2-Staircase} {Schur} {Functions}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {65},
year = {2011-2012},
url = {http://geodesic.mathdoc.fr/item/SLC_2011-2012_65_a5/}
}
TY - JOUR AU - Philippe Biane AU - Luigi Cantini AU - Andrea Sportiello TI - Doubly-Refined Enumeration of Alternating Sign Matrices and Determinants of 2-Staircase Schur Functions JO - Séminaire lotharingien de combinatoire PY - 2011-2012 VL - 65 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SLC_2011-2012_65_a5/ ID - SLC_2011-2012_65_a5 ER -
%0 Journal Article %A Philippe Biane %A Luigi Cantini %A Andrea Sportiello %T Doubly-Refined Enumeration of Alternating Sign Matrices and Determinants of 2-Staircase Schur Functions %J Séminaire lotharingien de combinatoire %D 2011-2012 %V 65 %I mathdoc %U http://geodesic.mathdoc.fr/item/SLC_2011-2012_65_a5/ %F SLC_2011-2012_65_a5
Philippe Biane; Luigi Cantini; Andrea Sportiello. Doubly-Refined Enumeration of Alternating Sign Matrices and Determinants of 2-Staircase Schur Functions. Séminaire lotharingien de combinatoire, Tome 65 (2011-2012). http://geodesic.mathdoc.fr/item/SLC_2011-2012_65_a5/