Tableaux in the Whitney Module of a Matroid
Séminaire lotharingien de combinatoire, Tome 63 (2010)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

The Whitney module of a matroid is a natural analogue of the tensor algebra of the exterior algebra of a vector space that takes into account the dependencies of the matroid.

In this paper we indicate the role that tableaux can play in describing the Whitney module. We will use our results to describe a basis of the Whitney module of a certain class of matroids known as freedom (also known as Schubert, or shifted) matroids. The doubly multilinear submodule of the Whitney module is a representation of the symmetric group. We will describe a formula for the multiplicity hook shapes in this representation in terms of the no broken circuit sets.

@article{SLC_2010_63_a5,
     author = {Andrew Berget},
     title = {Tableaux in the {Whitney} {Module} of a {Matroid}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {63},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/SLC_2010_63_a5/}
}
TY  - JOUR
AU  - Andrew Berget
TI  - Tableaux in the Whitney Module of a Matroid
JO  - Séminaire lotharingien de combinatoire
PY  - 2010
VL  - 63
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2010_63_a5/
ID  - SLC_2010_63_a5
ER  - 
%0 Journal Article
%A Andrew Berget
%T Tableaux in the Whitney Module of a Matroid
%J Séminaire lotharingien de combinatoire
%D 2010
%V 63
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2010_63_a5/
%F SLC_2010_63_a5
Andrew Berget. Tableaux in the Whitney Module of a Matroid. Séminaire lotharingien de combinatoire, Tome 63 (2010). http://geodesic.mathdoc.fr/item/SLC_2010_63_a5/