Identities for the Number of Standard Young Tableaux in some (k,l)-Hooks
Séminaire lotharingien de combinatoire, Tome 63 (2010)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Closed formulas are known for S(k,0;n), the number of standard Young tableaux of size n and with at most k parts, where 1=k=5. Here we study the analogous problem for S(k,l;n), the number of standard Young tableaux of size n which are contained in the (k,l)-hook. We deduce some formulas for the cases k+l=4.

@article{SLC_2010_63_a2,
     author = {Amitai Regev},
     title = {Identities for the {Number} of {Standard} {Young} {Tableaux} in some {(k,l)-Hooks}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {63},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/SLC_2010_63_a2/}
}
TY  - JOUR
AU  - Amitai Regev
TI  - Identities for the Number of Standard Young Tableaux in some (k,l)-Hooks
JO  - Séminaire lotharingien de combinatoire
PY  - 2010
VL  - 63
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2010_63_a2/
ID  - SLC_2010_63_a2
ER  - 
%0 Journal Article
%A Amitai Regev
%T Identities for the Number of Standard Young Tableaux in some (k,l)-Hooks
%J Séminaire lotharingien de combinatoire
%D 2010
%V 63
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2010_63_a2/
%F SLC_2010_63_a2
Amitai Regev. Identities for the Number of Standard Young Tableaux in some (k,l)-Hooks. Séminaire lotharingien de combinatoire, Tome 63 (2010). http://geodesic.mathdoc.fr/item/SLC_2010_63_a2/