Symmetric and Antisymmetric Vector-valued Jack Polynomials
Séminaire lotharingien de combinatoire, Tome 64 (2010-2011)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
Polynomials with values in an irreducible module of the symmetric group can be given the structure of a module for the rational Cherednik algebra, called a standard module. This algebra has one free parameter and is generated by differential-difference ("Dunkl") operators, multiplication by coordinate functions and the group algebra. By specializing Griffeth's (arXiv:0707.0251) results for the G(r,p,N) setting, one obtains norm formulae for symmetric and antisymmetric polynomials in the standard module. Such polynomials of minimum degree have norms which involve hook-lengths and generalize the norm of the alternating polynomial.
@article{SLC_2010-2011_64_a0,
author = {Charles F. Dunkl},
title = {Symmetric and {Antisymmetric} {Vector-valued} {Jack} {Polynomials}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2010-2011},
volume = {64},
url = {http://geodesic.mathdoc.fr/item/SLC_2010-2011_64_a0/}
}
Charles F. Dunkl. Symmetric and Antisymmetric Vector-valued Jack Polynomials. Séminaire lotharingien de combinatoire, Tome 64 (2010-2011). http://geodesic.mathdoc.fr/item/SLC_2010-2011_64_a0/