A Generalized Major Index Statistic
Séminaire lotharingien de combinatoire, Tome 60 (2009)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Inspired by the k-inversion statistic for LLT polynomials, we define a k-inversion number and k-descent set for words. Using these, we define a new statistic on words, called the k-major index, that interpolates between the major index and inversion number. We give a bijective proof that the k-major index is equi-distributed with the major index, generalizing a classical result of Foata and rediscovering a result of Kadell. Inspired by recent work of Haglund and Stevens, we give a partial extension of these definitions and constructions to standard Young tableaux. Finally, we give an application to Macdonald polynomials made possible through connections with LLT polynomials.
@article{SLC_2009_60_a2,
author = {Sami H. Assaf},
title = {A {Generalized} {Major} {Index} {Statistic}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {60},
year = {2009},
url = {http://geodesic.mathdoc.fr/item/SLC_2009_60_a2/}
}
Sami H. Assaf. A Generalized Major Index Statistic. Séminaire lotharingien de combinatoire, Tome 60 (2009). http://geodesic.mathdoc.fr/item/SLC_2009_60_a2/