Hyperoctahedral Species
Séminaire lotharingien de combinatoire, 61A (2009-2011)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We introduce hyperoctahedral species ($\H$-species) or species of type B, which are analogous to the classical tensor species, but on which we consider the action of the groups of signed permutations. We give a bistrong monoidal functor, a functor which preserves Hopf monoids, between the monoidal categories of species and H-species. We also define bilax monoidal functors (functors which preserve the structure of bimonoids) between the category of H-species and the category of graded vector spaces. Using these functors, the combinatorial Hopf algebra DQSym is shown to arise from the cofree comonoid on the exponential species.
@article{SLC_2009-2011_61A_a9,
author = {Nantel Bergeron and Philippe Choquette},
title = {Hyperoctahedral {Species}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {61A},
year = {2009-2011},
url = {http://geodesic.mathdoc.fr/item/SLC_2009-2011_61A_a9/}
}
Nantel Bergeron; Philippe Choquette. Hyperoctahedral Species. Séminaire lotharingien de combinatoire, 61A (2009-2011). http://geodesic.mathdoc.fr/item/SLC_2009-2011_61A_a9/