Generalization of Scott's Permanent Identity
Séminaire lotharingien de combinatoire, 61A (2009-2011)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
Let x={x1,...,xr}, y={y1,...,yn}, z={z1,...,zn} be three sets of indeterminates. We give the value of the determinant
$\displaystyle \Bigg\vert \prod_{x\in \x} (xy-z)^{-1} \Bigg\vert _{y\in\y, z\in\z} $
when specializing y and z to the set of roots of yn-1 and zn-ξn, respectively.
@article{SLC_2009-2011_61A_a8,
author = {Alain Lascoux},
title = {Generalization of {Scott's} {Permanent} {Identity}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2009-2011},
volume = {61A},
url = {http://geodesic.mathdoc.fr/item/SLC_2009-2011_61A_a8/}
}
Alain Lascoux. Generalization of Scott's Permanent Identity. Séminaire lotharingien de combinatoire, 61A (2009-2011). http://geodesic.mathdoc.fr/item/SLC_2009-2011_61A_a8/