Baxter Permutations and Plane Bipolar Orientations
Séminaire lotharingien de combinatoire, 61A (2009-2011)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
We present a simple bijection between Baxter permutations of size n and plane bipolar orientations with n edges. This bijection translates several classical parameters of permutations (number of ascents, right-to-left maxima, left-to-right minima ...) into natural parameters of plane bipolar orientations (number of vertices, degree of the sink, degree of the source ...), and has remarkable symmetry properties. % By specializing it to Baxter permutations avoiding the pattern 2413, we obtain a bijection with non-separable planar maps. A further specialization yields a bijection between permutations avoiding 2413 and 3142 and series-parallel maps.
@article{SLC_2009-2011_61A_a7,
author = {Nicolas Bonichon and Mireille Bousquet-M\'elou and \'Eric Fusy},
title = {Baxter {Permutations} and {Plane} {Bipolar} {Orientations}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2009-2011},
volume = {61A},
url = {http://geodesic.mathdoc.fr/item/SLC_2009-2011_61A_a7/}
}
Nicolas Bonichon; Mireille Bousquet-Mélou; Éric Fusy. Baxter Permutations and Plane Bipolar Orientations. Séminaire lotharingien de combinatoire, 61A (2009-2011). http://geodesic.mathdoc.fr/item/SLC_2009-2011_61A_a7/