A Ridiculously Simple and Explicit Implicit Function Theorem
Séminaire lotharingien de combinatoire, 61A (2009-2011)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
I show that the general implicit-function problem (or parametrized fixed-point problem) in one complex variable has an explicit series solution given by a trivial generalization of the Lagrange inversion formula. I give versions of this formula for both analytic functions and formal power series.
@article{SLC_2009-2011_61A_a3,
author = {Alan D. Sokal},
title = {A {Ridiculously} {Simple} and {Explicit} {Implicit} {Function} {Theorem}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {61A},
year = {2009-2011},
url = {http://geodesic.mathdoc.fr/item/SLC_2009-2011_61A_a3/}
}
Alan D. Sokal. A Ridiculously Simple and Explicit Implicit Function Theorem. Séminaire lotharingien de combinatoire, 61A (2009-2011). http://geodesic.mathdoc.fr/item/SLC_2009-2011_61A_a3/