Decomposable Functors and the Exponential Principle, II
Séminaire lotharingien de combinatoire, 61A (2009-2011)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
We develop a new setting for the exponential principle in the context of multisort species, where indecomposable objects are generated intrinsically instead of being given in advance. Our approach uses the language of functors and natural transformations (composition operators), and we show that, somewhat surprisingly, a single axiom for the composition already suffices to guarantee validity of the exponential formula. We provide various illustrations of our theory, among which are applications to the enumeration of (semi-)magic squares.
@article{SLC_2009-2011_61A_a12,
author = {Peter J. Cameron and Christian Krattenthaler and Thomas W. M\"uller},
title = {Decomposable {Functors} and the {Exponential} {Principle,} {II}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2009-2011},
volume = {61A},
url = {http://geodesic.mathdoc.fr/item/SLC_2009-2011_61A_a12/}
}
TY - JOUR AU - Peter J. Cameron AU - Christian Krattenthaler AU - Thomas W. Müller TI - Decomposable Functors and the Exponential Principle, II JO - Séminaire lotharingien de combinatoire PY - 2009-2011 VL - 61A UR - http://geodesic.mathdoc.fr/item/SLC_2009-2011_61A_a12/ ID - SLC_2009-2011_61A_a12 ER -
Peter J. Cameron; Christian Krattenthaler; Thomas W. Müller. Decomposable Functors and the Exponential Principle, II. Séminaire lotharingien de combinatoire, 61A (2009-2011). http://geodesic.mathdoc.fr/item/SLC_2009-2011_61A_a12/