Probabilistic Proofs of Hook Length Formulas Involving Trees
Séminaire lotharingien de combinatoire, 61A (2009-2011) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

Recently, Han discovered two formulas involving binary trees which have the interesting property that hooklengths appear as exponents. The purpose of this note is to give a probabilistic proof of one of Han's formulas. Yang has generalized Han's results to ordered trees. We show how the probabilistic approach can also be used in Yang's setting, as well as for a generalization of Han's formula in terms of certain infinite trees.

@article{SLC_2009-2011_61A_a1,
     author = {Bruce E. Sagan},
     title = {Probabilistic {Proofs} of {Hook} {Length} {Formulas} {Involving} {Trees}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {2009-2011},
     volume = {61A},
     url = {http://geodesic.mathdoc.fr/item/SLC_2009-2011_61A_a1/}
}
TY  - JOUR
AU  - Bruce E. Sagan
TI  - Probabilistic Proofs of Hook Length Formulas Involving Trees
JO  - Séminaire lotharingien de combinatoire
PY  - 2009-2011
VL  - 61A
UR  - http://geodesic.mathdoc.fr/item/SLC_2009-2011_61A_a1/
ID  - SLC_2009-2011_61A_a1
ER  - 
%0 Journal Article
%A Bruce E. Sagan
%T Probabilistic Proofs of Hook Length Formulas Involving Trees
%J Séminaire lotharingien de combinatoire
%D 2009-2011
%V 61A
%U http://geodesic.mathdoc.fr/item/SLC_2009-2011_61A_a1/
%F SLC_2009-2011_61A_a1
Bruce E. Sagan. Probabilistic Proofs of Hook Length Formulas Involving Trees. Séminaire lotharingien de combinatoire, 61A (2009-2011). http://geodesic.mathdoc.fr/item/SLC_2009-2011_61A_a1/