Counting Multiderangements by Excedances
Séminaire lotharingien de combinatoire, Tome 59 (2008-2010)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We consider in this work the enumeration of multiderangements of a multiset n={1n1,2n2,...,mnm} by the number of excedances. We prove several properties, including the invariance under permutations of {n1,n2,...,nm}, the symmetry, the recurrence relation, the real-rootedness, and a combinatorial expansion, of the generating function dn(x) of multiderangements by excedances, thus generalizing the corresponding results for the classical derangements. By a further extension, the generating function for multipermutations by numbers of excedances and fixed points is also given.
@article{SLC_2008-2010_59_a2,
author = {Chak-On Chow},
title = {Counting {Multiderangements} by {Excedances}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {59},
year = {2008-2010},
url = {http://geodesic.mathdoc.fr/item/SLC_2008-2010_59_a2/}
}
Chak-On Chow. Counting Multiderangements by Excedances. Séminaire lotharingien de combinatoire, Tome 59 (2008-2010). http://geodesic.mathdoc.fr/item/SLC_2008-2010_59_a2/