Discrete Excursions
Séminaire lotharingien de combinatoire, Tome 57 (2007-2010)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

It is well known that the length generating function E(t) of Dyck paths (excursions with steps +-1) satisfies 1-E+t2E2=0. The generating function E(k)(t) of Dyck paths of height at most k is E(k)=Fk/Fk+1, where the Fk are polynomials in t given by F0=F1=1 and Fk+1= Fk-t2Fk-1. This means that the generating function of these polynomials is \sumk>=0Fkzk = 1/(1-z+t2z2). We note that the denominator of this fraction is the minimal polynomial of the algebraic series E(t). This pattern persists for walks with general steps. For any finite set of steps S, the generating function E(k)(t) of excursions (generalized Dyck paths) taking their steps in S and of height at most k is the ratio Fk/Fk+1 of two polynomials. These polynomials satisfy a linear recurrence relation with coefficients in Q[t]. Their (rational) generating function can be written \sumk>=0Fkzk = N(t,z)/D(t,z)$. The excursion generating function E(t) is algebraic and satisfies D(t,E(t))=0 (while N(t,E(t)) does not vanish). If max S = a and min S = b, the polynomials D(t,z) and N(t,z) can be taken to be respectively of degree da,b = \binom {a+b} a and da,b-a-b in z. These degrees are in general optimal: for instance, when S = {a,-b} with a and b coprime, D(t,z) is irreducible, and is thus the minimal polynomial of the excursion generating function E(t). The proofs of these results involve a slightly unusual mixture of combinatorial and algebraic tools, among which the kernel method (which solves certain functional equations), symmetric functions, and a pinch of Galois theory.

@article{SLC_2007-2010_57_a3,
     author = {Mireille Bousquet-M\'elou},
     title = {Discrete {Excursions}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {57},
     year = {2007-2010},
     url = {http://geodesic.mathdoc.fr/item/SLC_2007-2010_57_a3/}
}
TY  - JOUR
AU  - Mireille Bousquet-Mélou
TI  - Discrete Excursions
JO  - Séminaire lotharingien de combinatoire
PY  - 2007-2010
VL  - 57
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2007-2010_57_a3/
ID  - SLC_2007-2010_57_a3
ER  - 
%0 Journal Article
%A Mireille Bousquet-Mélou
%T Discrete Excursions
%J Séminaire lotharingien de combinatoire
%D 2007-2010
%V 57
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2007-2010_57_a3/
%F SLC_2007-2010_57_a3
Mireille Bousquet-Mélou. Discrete Excursions. Séminaire lotharingien de combinatoire, Tome 57 (2007-2010). http://geodesic.mathdoc.fr/item/SLC_2007-2010_57_a3/