On Partitions Avoiding 3-Crossings
Séminaire lotharingien de combinatoire, Tome 54 (2006-2007)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

A partition on [n] has a crossing if there exists i1i2j1j2 such that i1 and j1 are in the same block, i2 and j2 are in the same block, but i1 and i2 are not in the same block. Recently, Chen et al. refined this classical notion by introducing k-crossings, for any integer k. In this new terminology, a classical crossing is a 2-crossing. The number of partitions of [n] avoiding 2-crossings is well-known to be the nth Catalan number Cn=\binom {2n} {n} / (n+1). This raises the question of counting k-noncrossing partitions for k>=3. We prove that the sequence counting 3-noncrossing partitions is P-recursive, that is, satisfies a linear recurrence relation with polynomial coefficients. We give explicitly such a recursion. However, we conjecture that k-noncrossing partitions are not P-recursive, for k>=4. We obtain similar results for partitions avoiding enhanced 3-crossings.

@article{SLC_2006-2007_54_a4,
     author = {Mireille Bousquet-M\'elou and Guoce Xin},
     title = {On {Partitions} {Avoiding} {3-Crossings}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {54},
     year = {2006-2007},
     url = {http://geodesic.mathdoc.fr/item/SLC_2006-2007_54_a4/}
}
TY  - JOUR
AU  - Mireille Bousquet-Mélou
AU  - Guoce Xin
TI  - On Partitions Avoiding 3-Crossings
JO  - Séminaire lotharingien de combinatoire
PY  - 2006-2007
VL  - 54
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2006-2007_54_a4/
ID  - SLC_2006-2007_54_a4
ER  - 
%0 Journal Article
%A Mireille Bousquet-Mélou
%A Guoce Xin
%T On Partitions Avoiding 3-Crossings
%J Séminaire lotharingien de combinatoire
%D 2006-2007
%V 54
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2006-2007_54_a4/
%F SLC_2006-2007_54_a4
Mireille Bousquet-Mélou; Guoce Xin. On Partitions Avoiding 3-Crossings. Séminaire lotharingien de combinatoire, Tome 54 (2006-2007). http://geodesic.mathdoc.fr/item/SLC_2006-2007_54_a4/