Symmetric Inclusion-Exclusion
Séminaire lotharingien de combinatoire, Tome 54 (2006-2007)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
One form of the inclusion-exclusion principle asserts that if A and B are functions of finite sets then the formulas $ A(S) = \sum_{T\subseteq S}B(T)$ and $ B(S) = \sum_{T\subseteq S}(-1)^{\vert S\vert-\vert T\vert}A(T)$ are equivalent. If we replace B(S)$ by (-1)$ which we call symmetric inclusion-exclusion. We study instances of symmetric inclusion-exclusion in which the functions A and B have combinatorial or probabilistic interpretations. In particular, we study cases related to the Pólya-Eggenberger urn model in which A(S) and B(S) depend only on the cardinality of S.
@article{SLC_2006-2007_54_a1,
author = {Ira M. Gessel},
title = {Symmetric {Inclusion-Exclusion}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {54},
year = {2006-2007},
url = {http://geodesic.mathdoc.fr/item/SLC_2006-2007_54_a1/}
}
Ira M. Gessel. Symmetric Inclusion-Exclusion. Séminaire lotharingien de combinatoire, Tome 54 (2006-2007). http://geodesic.mathdoc.fr/item/SLC_2006-2007_54_a1/