Bergman Complexes, Coxeter Arrangements, and Graph Associahedra
Séminaire lotharingien de combinatoire, 54A (2005-2007)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
Tropical varieties play an important role in algebraic geometry. The Bergman complex B(M) and the positive Bergman complex B+(M) of an oriented matroid M generalize to matroids the notions of the tropical variety and positive tropical variety associated to a linear ideal. Our main result is that if A is a Coxeter arrangement of type \Phi with corresponding oriented matroid M\Phi, then B+(M\Phi) is dual to the graph associahedron of type \Phi, and B(M\Phi) equals the nested set complex of A. In addition, we prove that for any orientable matroid M, one can find |\mu(M)| different reorientations of M such that the corresponding positive Bergman complexes cover B(M), where \mu(M) denotes the Möbius function of the lattice of flats of M.
@article{SLC_2005-2007_54A_a9,
author = {Federico Ardila and Victor Reiner and Lauren Williams},
title = {Bergman {Complexes,} {Coxeter} {Arrangements,} and {Graph} {Associahedra}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2005-2007},
volume = {54A},
url = {http://geodesic.mathdoc.fr/item/SLC_2005-2007_54A_a9/}
}
Federico Ardila; Victor Reiner; Lauren Williams. Bergman Complexes, Coxeter Arrangements, and Graph Associahedra. Séminaire lotharingien de combinatoire, 54A (2005-2007). http://geodesic.mathdoc.fr/item/SLC_2005-2007_54A_a9/