Bergman Complexes, Coxeter Arrangements, and Graph Associahedra
Séminaire lotharingien de combinatoire, 54A (2005-2007)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Tropical varieties play an important role in algebraic geometry. The Bergman complex B(M) and the positive Bergman complex B+(M) of an oriented matroid M generalize to matroids the notions of the tropical variety and positive tropical variety associated to a linear ideal. Our main result is that if A is a Coxeter arrangement of type \Phi with corresponding oriented matroid M\Phi, then B+(M\Phi) is dual to the graph associahedron of type \Phi, and B(M\Phi) equals the nested set complex of A. In addition, we prove that for any orientable matroid M, one can find |\mu(M)| different reorientations of M such that the corresponding positive Bergman complexes cover B(M), where \mu(M) denotes the Möbius function of the lattice of flats of M.
@article{SLC_2005-2007_54A_a9,
author = {Federico Ardila and Victor Reiner and Lauren Williams},
title = {Bergman {Complexes,} {Coxeter} {Arrangements,} and {Graph} {Associahedra}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {54A},
year = {2005-2007},
url = {http://geodesic.mathdoc.fr/item/SLC_2005-2007_54A_a9/}
}
TY - JOUR AU - Federico Ardila AU - Victor Reiner AU - Lauren Williams TI - Bergman Complexes, Coxeter Arrangements, and Graph Associahedra JO - Séminaire lotharingien de combinatoire PY - 2005-2007 VL - 54A PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SLC_2005-2007_54A_a9/ ID - SLC_2005-2007_54A_a9 ER -
Federico Ardila; Victor Reiner; Lauren Williams. Bergman Complexes, Coxeter Arrangements, and Graph Associahedra. Séminaire lotharingien de combinatoire, 54A (2005-2007). http://geodesic.mathdoc.fr/item/SLC_2005-2007_54A_a9/