The Combinatorics of Macdonald's Dn1 Operator
Séminaire lotharingien de combinatoire, 54A (2005-2007)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
To prove the existence of the Macdonald polynomials {P\la(x;q,t)}, \la a partition of n, Macdonald [Séminaire Lotharingien Combin. 20 (1988), Article B20a; "Symmetric functions and Hall polynomials", 2nd ed., Clarendon Press, New York, 1995] introduced an operator Dn1 and proved that for any Schur function s\la(x1, ..., xn), Dn1 s\la(x1, ..., xn) = \sum\mu d\la,\mu(q,t) s\mu(x1, ..., xn) where the sum runs over all partitions \mu of n which are less than or equal to \la in the dominance order and the d\la,\mu(q,t) are polynomials in q and t with integer coefficients. We give an explicit combinatorial formula for the d\la,\mu(q,t)'s.
@article{SLC_2005-2007_54A_a18,
author = {Jeffrey Remmel},
title = {The {Combinatorics} of {Macdonald's} {Dn1} {Operator}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {54A},
year = {2005-2007},
url = {http://geodesic.mathdoc.fr/item/SLC_2005-2007_54A_a18/}
}
Jeffrey Remmel. The Combinatorics of Macdonald's Dn1 Operator. Séminaire lotharingien de combinatoire, 54A (2005-2007). http://geodesic.mathdoc.fr/item/SLC_2005-2007_54A_a18/