The Combinatorics of Macdonald's Dn1 Operator
Séminaire lotharingien de combinatoire, 54A (2005-2007)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

To prove the existence of the Macdonald polynomials {P\la(x;q,t)}, \la a partition of n, Macdonald [Séminaire Lotharingien Combin. 20 (1988), Article B20a; "Symmetric functions and Hall polynomials", 2nd ed., Clarendon Press, New York, 1995] introduced an operator Dn1 and proved that for any Schur function s\la(x1, ..., xn), Dn1 s\la(x1, ..., xn) = \sum\mu d\la,\mu(q,t) s\mu(x1, ..., xn) where the sum runs over all partitions \mu of n which are less than or equal to \la in the dominance order and the d\la,\mu(q,t) are polynomials in q and t with integer coefficients. We give an explicit combinatorial formula for the d\la,\mu(q,t)'s.

@article{SLC_2005-2007_54A_a18,
     author = {Jeffrey Remmel},
     title = {The {Combinatorics} of {Macdonald's} {Dn1} {Operator}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {54A},
     year = {2005-2007},
     url = {http://geodesic.mathdoc.fr/item/SLC_2005-2007_54A_a18/}
}
TY  - JOUR
AU  - Jeffrey Remmel
TI  - The Combinatorics of Macdonald's Dn1 Operator
JO  - Séminaire lotharingien de combinatoire
PY  - 2005-2007
VL  - 54A
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2005-2007_54A_a18/
ID  - SLC_2005-2007_54A_a18
ER  - 
%0 Journal Article
%A Jeffrey Remmel
%T The Combinatorics of Macdonald's Dn1 Operator
%J Séminaire lotharingien de combinatoire
%D 2005-2007
%V 54A
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2005-2007_54A_a18/
%F SLC_2005-2007_54A_a18
Jeffrey Remmel. The Combinatorics of Macdonald's Dn1 Operator. Séminaire lotharingien de combinatoire, 54A (2005-2007). http://geodesic.mathdoc.fr/item/SLC_2005-2007_54A_a18/