Diagonal Temperley-Lieb Invariants and Harmonics
Séminaire lotharingien de combinatoire, 54A (2005-2007)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
In the context of the ring Q[x,y], of polynomials in 2n variables x=x1,...,xn and y=y1,...,yn, we introduce the notion of diagonally quasi-symmetric polynomials. These, also called diagonal Temperley-Lieb invariants, make possible the further introduction of the space of diagonal Temperley-Lieb harmonics and diagonal Temperley-Lieb coinvariant space. We present new results and conjectures concerning these spaces, as well as the space obtained as the quotient of the ring of diagonal Temperley-Lieb invariants by the ideal generated by constant term free diagonally symmetric invariants. We also describe how the space of diagonal Temperley-Lieb invariants affords a natural graded Hopf algebra structure, for n going to infinity. We finally show how this last space and its graded dual Hopf algebra are related to the well known Hopf algebras of symmetric functions, quasi-symmetric functions and noncommutative symmetric functions.
@article{SLC_2005-2007_54A_a16,
author = {Jean-Christophe Aval and Fran\c{c}ois Bergeron and Nantel Bergeron},
title = {Diagonal {Temperley-Lieb} {Invariants} and {Harmonics}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {54A},
year = {2005-2007},
url = {http://geodesic.mathdoc.fr/item/SLC_2005-2007_54A_a16/}
}
TY - JOUR AU - Jean-Christophe Aval AU - François Bergeron AU - Nantel Bergeron TI - Diagonal Temperley-Lieb Invariants and Harmonics JO - Séminaire lotharingien de combinatoire PY - 2005-2007 VL - 54A PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SLC_2005-2007_54A_a16/ ID - SLC_2005-2007_54A_a16 ER -
Jean-Christophe Aval; François Bergeron; Nantel Bergeron. Diagonal Temperley-Lieb Invariants and Harmonics. Séminaire lotharingien de combinatoire, 54A (2005-2007). http://geodesic.mathdoc.fr/item/SLC_2005-2007_54A_a16/